Apollo进阶课程㉓丨Apollo规划技术详解——Motion Planning with Environment

原文链接:进阶课程㉓丨Apollo规划技术详解——Motion Planning with Environment

行为层决定要在当前环境中执行的驾驶行为时,其可以是例如巡航-车道,改变车道或右转,所选择的行为必须被转换成路径或轨迹,可由低级反馈控制器跟踪。所产生的路径或轨迹必须满足车辆动力学约束的,对乘客来说是舒适的,并且避免与车载传感器检测到的障碍物的碰撞。寻找这样的路径或轨迹的任务是运动规划系统的责任。

由于规划感知控制之间的纽带,当前的新规划算法开发多考虑感知的不确定性以及控制的约束。在动态环境数据采集过程中,路径规划的最新发展目标是正确处理数据采集过程中的不确定性。这在实时的情况下会有更好的环境感知效果,并指导规划过程。通过考虑感知阶段的不确定性来提高防止危险情况的能力。从控制的角度来看,需考虑多目标,包括车辆的运动学约束和乘客的舒适性等。

上周阿波君为大家详细介绍了「进阶课程㉒Apollo规划技术详解——Motion Planning with Autonomous Driving」。

主要介绍了运动规划的一些基本方法,重点从robotics的角度阐释。包括有RRT(基于快速扩展随机树算法)Lattice网络方法Spira方法Polynomial方法Functional Optimization方法等。

本周阿波君将与大家分享Apollo规划技术详解——Motion Planning with Environment。下面,我们一起进入进阶课程第23期。


目录

1.运动规划的环境变化

2.Vehicle Model的建立

3.曲线坐标系SL

4.SL坐标系到XY坐标系的投影

5.XY坐标系到SL坐标系的投影


1.运动规划的环境变化

运动规划根据环境的变化在算法和处理方法上有很大的不同,涉及到模型建立平滑优化坐标转换以及障碍物投影等。如下图所示。

                                                                                                运动规划的环境变化


2.Vehicle Model的建立

                                                                                                Vehicle Model的建立

对于汽车而言,质点模型是远远不够的,无人车是前轮转向的车,前后位置的变化是不一样的,那么怎么去描述这种不一样呢?首先从刚体角度考虑,二维平面里的刚体涉及到XY\theta,也就是以车后轴中心作为XY坐标原点时车身的朝向heading。因为无人车运动模型还多了一个转向的变量,多了一个自由度,刚体模型也不够。

可以将汽车运动模型简化为自行车模型,将四轮抽象成两个轮子,前轮中心和后轮中心的运动方向和自行车一样。车辆在垂直方向的运动被忽略掉,用一个二维平面上的运动物体来描述车辆的运动模型。自行车运动的时候具有以下特点,旋转车头的时候,前轮和后轮都围绕一个中心点转动,并且后轮的转向半径(1/k)(1/k)与方向盘转动角度w满足以下关系,其中L为前轮中心和后轮中心的距离:

k=(tan(w))/k

                                                                                                运动规划与车辆模型

                                                                                                实际的自行车运动模型

在实际的自行车运动模型中,后轴中心是沿着如上图所示的一条平滑的轨迹运行,该轨迹对应的曲率(k)表示调整方向盘的度数,如果为正,表示向左转,反之则向右转。因此,自行车运动模型可以用XY\theta,k还有速度v来表示。那么沿着这样的轨迹运动时,如何去估计障碍物的距离呢?解决这个问题,先了解一下曲线坐标系以及与世界坐标系之间的转换关系。 


3.曲线坐标系SL

SL坐标系也叫做frenet frame,如下所示。它以道路中心线为参考,S表示道路中心线的方向L表示与道路中心线垂直的方向。在结构化道路上行驶的时候,SL坐标系比XY坐标系更加贴合实际需求。那么SL坐标系如何转换到XY坐标系呢?

                                                                                               SL坐标系和XY坐标系


4.SL坐标系到XY坐标系的投影

之所以要投影到世界坐标系,是因为很多信息是全局的,例如红绿灯位置,参考的是XY世界坐标系。在给定SL坐标系时,每一个点的S坐标本身对应一个(x-r,y-r)(x-r,y-r)坐标,根据该点的横向偏移距离,可以求出给定点在世界坐标系中的XY位置,如下图所示。其中theta是参考线的方向,也就是切线方向。如果XY与S方向平行的话,轨迹的曲率还满足图中所示的关系。

                                                                                                SL坐标系到XY坐标系的投影


5.XY坐标系到SL坐标系的投影

对于一个给定的曲线,如何将XY坐标系下的点转换到SL坐标系呢?因为SL坐标系并不是唯一的,XY会在曲线上产生很多投影,投影点是经过XY坐标,且垂直于曲线的线段与曲线的交点,如下图所示,XY就有两个投影点。通常情况下会增加一些限制,例如投影距离不能超曲率值。需要注意的是,掉头的时候还是需要特殊处理的。

                                                                                                XY坐标系到SL坐标系的投影

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439813.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java对象模型-oop和klass

oop-klass模型 Hotspot 虚拟机在内部使用两组类来表示Java的对象和类。 oop(ordinary object pointer),用来描述对象实例信息。klass,用来描述 Java 类,是虚拟机内部Java类型结构的对等体 。 JVM内部定义了各种oop-klass,在JV…

Apollo进阶课程㉔丨Apollo 规划技术详解——Motion Planning Environment

原文链接:进阶课程㉔丨Apollo 规划技术详解——Motion Planning Environment 自动驾驶汽车核心技术包括环境感知、行为决策、运动规划与控制等方面。其中,行为决策系统、运动规划与控制系统作为无人驾驶汽车的“大脑”,决定了其在不同交通驾…

一步步编写操作系统 26 打开A20地址线

打开A20地址线 还记得实模式下的wrap-around吗?也就是地址回绕。咱们一起来复习一下。实模式下内存访问是采取“段基址:段内偏移地址”的形式,段基址要乘以16后再加上段内偏移地址。实模式下寄存器都是16位的,如果段基址和段内偏移地址都为1…

一步步编写操作系统 27 处理器微架构之流水线简介

了解处理器内部硬件架构,有助于理解软件运行原理,因为这两者本身相辅相成,相互依存。就像枪和狙击手,枪的操作和外形设计都是要根据人体工学,让人不仅操作容易,而且携带也要轻便,做到能随时射出…

Apollo进阶课程㉚丨Apollo ROS背景介绍

原文链接:进阶课程㉚丨Apollo ROS背景介绍 ROS是机器人学习和无人车学习最好Linux平台软件,资源丰厚。无人车的规划、控制算法通常运行在Linux系统上,各个模块通常使用ROS进行连接。 上周阿波君为大家详细介绍了「进阶课程㉙Apollo控制技术详…

一步步编写操作系统 30 cpu的分支预测简介

人在道路的分岔口时要预测哪条路能够到达目的地,面对众多选择时,计算机也一样要抉择,毕竟计算机的运行方式是以人的思路来设计的,计算机中的抉择其实就是人在抉择。 cpu中的指令是在流水线上执行。分支预测,是指当处理…

【HDU - 5492】Find a path(dp,tricks)

题干: Frog fell into a maze. This maze is a rectangle containing NN rows and MM columns. Each grid in this maze contains a number, which is called the magic value. Frog now stays at grid (1, 1), and he wants to go to grid (N, M). For each step,…

Apollo进阶课程㉜丨Apollo ROS原理—1

原文链接:进阶课程㉜丨Apollo ROS原理—1 ROS在开发过程中,基于功能把整个自动驾驶系统分成多个模块,每个模块负责自己消息的接收、处理、发布。当模块需要联调时,通过框架可以把各个模块快速的集成到一起。 上周阿波君为大家详细…

Ubuntu下安装Chrome浏览器的两个方法

一、通过直接下载安装Google Chrome浏览器deb包。 打开Ubuntu终端,以下为32位版本,使用下面的命令。 wget https://dl.google.com/linux/direct/google-chrome-stable_current_i386.deb 以下为64位版本,使用下面的命令。 wget https://dl.…

Apollo进阶课程㉝丨Apollo ROS原理—2

原文链接:进阶课程㉝丨Apollo ROS原理—2 在ROS系统中,从数据的发布到订阅节点之间需要进行数据的拷贝。在数据量很大的情况下,很显然这会影响数据的传输效率。所以Apollo项目对于ROS第一个改造就是通过共享内存来减少数据拷贝,以…

Java 10 常用集合继承关系图

概述 集合类存放的都是对象的引用,而非对象本身,出于表达上的便利,我们称集合中的对象就是指集合中对象的引用。 类图如下: 1、Iterable与Iterator接口之间的区别 我看到好多网上的文章类图里面Collection 是继承Iterator接口&a…

【CodeForces - 673D】Bear and Two Paths(构造,tricks)

题干: Bearland has n cities, numbered 1 through n. Cities are connected via bidirectional roads. Each road connects two distinct cities. No two roads connect the same pair of cities. Bear Limak was once in a city a and he wanted to go to a cit…

Apoll进阶课程㉞丨Apollo ROS原理—3

原文链接:进阶课程㉞丨Apollo ROS原理—3 机器人操作系统(ROS)是一个成熟而灵活的机器人编程框架。ROS提供了所需的工具,可以轻松访问传感器数据,处理数据,并为机器人的电机和其它执行器生成适当的响应。整个ROS系统被设计为在计…

SM3密码杂凑算法原理

目录 1.概述 2、算法描述 2.1 概述 2.2 填充 2.3 迭代压缩 2.3 消息扩展 2.4 压缩函数 2.5 杂凑值 1.概述 SM3是我国采用的一种密码散列函数标准,由国家密码管理局于2010年12月17日发布。相关标准为“GM/T 0004-2012 《SM3密码杂凑算法》”。 在商用密码体…

动手学无人驾驶(1):交通标志识别

今天主要介绍无人驾驶当中深度学习技术的应用。 本文是根据博客专家AdamShan的文章整理而来,在此表示感谢。 关于深度学习的图像分类技术,网上已有很多关于深度学习的课程(如吴恩达老师的深度学习专项课程),故本文不对…

《操作系统真象还原》-阅读笔记(上)

第一章 配置bochs,进入bochs simulator后一直是黑屏,原来默认是调试模式,需要输入C(continue)来让调试继续。 第二章 主讲MBR及进入MBR前的步骤 1.实模式只能访问1MB的内存空间。 2.BIOS在ROM中。 3.开机上电后CS&a…

Apollo进阶课程㉟丨Apollo ROS原理—4

原文链接:进阶课程㉟丨Apollo ROS原理—4 ROS是一个强大而灵活的机器人编程框架,从软件构架的角度说,它是一种基于消息传递通信的分布式多进程框架。 ROS本身是基于消息机制的,可以根据功能把软件拆分成为各个模块,每…

《操作系统真象还原》-阅读笔记(中)

第七章 操作系统是由中断驱动的。 中断分为外部中断和内部中断。 外部中断分为可屏蔽中断和不可屏蔽中断,内部中断分为软中断和异常。 外部中断 来自CPU外部的中断。可屏蔽中断:通过INTR引脚进入CPU,外部设备如硬盘、网卡、打印机等发出的…

动手学无人驾驶(2):车辆检测

上一篇博客介绍了无人驾驶中深度学习在交通标志识别中的应用(动手学无人驾驶(1):交通标志识别)。 本文介绍如何使用深度学习进行车辆检测,使用到的模型是YOLO模型,关于YOLO模型的具体检测原理&a…

《操作系统真象还原》-阅读笔记(下)

第十一章 任意进程的页目录表第0~767个页目录项属于用户空间,指向用户页表。第768~1023个页目录项指向内核页表。每创建一个新的用户进程,就将内核页目录项复制到用户进程的页目录表,其次需要把用户页目录表中最后一个页目录项更新为用户进程自己的页目…