ElasticSearch DSL语句(bool查询、算分控制、地理查询、排序、分页、高亮等)

文章目录

  • DSL 查询种类
  • DSL query 基本语法
    • 1、全文检索
    • 2、精确查询
    • 3、地理查询
    • 4、function score (算分控制)
    • 5、bool 查询
  • 搜索结果处理
    • 1、排序
    • 2、分页
    • 3、高亮
  • RestClient操作

DSL 查询种类

  • 查询所有:查询所有数据,一般在测试时使用。march_all,但是一般显示全部,有一个分页的功能
  • 全文检索(full text)查询:利用分词器对用户的输入内容进行分词,然后去倒排索引库匹配。例如:
    • match_query
    • mutil_match_query
  • 精确查询:根据精确词条值查询数据,一般查找的时keyword、数值、日期、boolean等字段。例如:
    • ids
    • term
    • range
  • 地理查询(geo):根据经纬度查询,例如:
    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询时将上面各种查询条件组合在一起,合并查询条件。例如:
    • bool
    • funcation_score

DSL query 基本语法

1、全文检索

# DSL查询
GET /indexName/_search
{"query":{"查询类型":{"查询条件":"条件值"}}
}

match 与 multi_match 的与别是前者根据单字段查,后者根据多字段查。
参与搜索的字段越多,查询效率越低,建议利用copy_to将多个检索字段放在一起,然后使用match—all字段查。

GET /hotel/_search
{"query": {"match": {"city": "上海"}}
}GET /hotel/_search
{"query": {"match": {"all": "如家"}}
}GET /hotel/_search{"query": {"multi_match": {"query": "如家","fields": ["name","brand","business"]}}}

2、精确查询

精确查询: term字段全值匹配,range字段范围匹配。
精确查询一般查找keyword、数值、boolean等不可分词的字段

# term
GET /hotel/_search
{"query": {"term": {"city": {"value": "北京"}}}
}
# range
GET /hotel/_search
{"query": {"range": {"price": {"gt": 1000,"lt": 2000}}}
}

3、地理查询

在这里插入图片描述
在这里插入图片描述

GET /hotel/_search
{"query": {"geo_bounding_box": {"location": {"top_left": {"lat": 31.1,"lon": 121.5},"bottom_right": {"lat": 30.9,"lon": 121.7}}}}
}GET /hotel/_search
{"query": {"geo_distance": {"distance": "20km","location": {"lat": 31.13,"lon": 121.8}}}
}

4、function score (算分控制)

复合查询(compound ):将简单查询条件组合在一起,实现复杂搜索逻辑。

  • function score:算分函数查询,可以控制文档的相关性算分,控制排名。例如百度竞价

es在5.1及之后就弃用了 TF-IDF 算法,开始采用 BM25算法。BM25算法不会因为词的出现频率变大而导致算分无限增大,会逐渐趋近一个值
在这里插入图片描述
在这里插入图片描述

function score query :可以修改文档相关性算分,得到新的算分。
三要素

  • 过滤条件:决定哪些条件要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算
    在这里插入图片描述
GET /hotel/_search
{"query": {"function_score": {"query": {"match": {"all": "如家酒店"}},"functions": [{"filter": {"term": {"city": "上海"}},"weight": 10}],"boost_mode": "sum"}}
}

5、bool 查询

boolean query:布尔查询是一个或多个子查询的组合。

  • must:必须匹配每个子查询,类似”and“
  • should:选择性匹配子查询,类似”or“
  • must_not:必须不匹配,不参与算分,类似”非“
  • filter:必须匹配,不参与算分
    在这里插入图片描述
GET /hotel/_search
{"query": {"bool": {"must": [{"match": {"all": "上海"}}],"must_not": [{"range": {"price": {"gt": 500}}}],"filter": [{"geo_distance": {"distance": "10km","location": {"lat": 31.21,"lon": 121.5}}}]}}
}

搜索结果处理

1、排序

es支持对搜索结构进行排序,默认是根据相关度算分(_score)进行排序。可以排序的字段有keyword,数值、地理坐标、日期类型等。

GET /hotel/_search
{"query": {"match_all": {}},"sort": [{"id": {"order": "desc"}}]
}
GET /hotel/_search
{"query": {"match_all": {}},"sort": [{"_geo_distance": {"location": {"lat": 31.2,"lon": 121.5},"order": "asc","unit": "km"}}]
}

这个排序的结果就是相聚的公里数。
在这里插入图片描述

2、分页

在这里插入图片描述

在这里插入图片描述
针对深度分页;ES给出了两种方案

  • search after:分页时需要排序,原理是从上次的排序值开始(末尾值),查询下一页的数据。官方推荐使用,不会太占内存。手机向下反动滚页。
  • scroll:原理是将排序数据形成快照,保存在内存。不推荐

3、高亮

在这里插入图片描述

ES默认搜索字段和高亮字段必须一致,否则不会高亮。或者使用 "require_field_match": "false" 也能高亮。

最后将查询结果中 highlight 与 指定高亮的字段进行替换返回给前端就行。
在这里插入图片描述

RestClient操作

在这里插入图片描述

在这里插入图片描述
普通查询

    @Testpublic void  testMatchAll() throws IOException {SearchRequest searchRequest = new SearchRequest("hotel");searchRequest.source().query(QueryBuilders.matchAllQuery());SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);SearchHits searchHits = searchResponse.getHits();long value = searchHits.getTotalHits().value;System.out.println(value);SearchHit[] hits = searchHits.getHits();System.out.println(hits[0]);HotelDoc hotelDoc = JSON.parseObject(hits[0].getSourceAsString(), HotelDoc.class);System.out.println(hotelDoc);}QueryBuilders.matchAllQuery()QueryBuilders.matchQuery("all","如家")QueryBuilders.multiMatchQuery("如家","name","brand","business")QueryBuilders.termQuery("city","上海")QueryBuilders.rangeQuery("price").gt(100).lt(400)BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();boolQueryBuilder.must(QueryBuilders.termQuery("city","北京"));boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gt(100).lt(400));

分页和排序

    public void testPageAndSort() throws IOException {int pageNum = 2, pageSize = 10;SearchRequest searchRequest = new SearchRequest("hotel");BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("brand", "如家");MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery("all", "北京");boolQueryBuilder.must(termQueryBuilder);boolQueryBuilder.must(matchQueryBuilder);searchRequest.source().query(boolQueryBuilder);searchRequest.source().from((pageNum - 1) * pageSize).size(pageSize);searchRequest.source().sort("price", SortOrder.ASC);SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);SearchHit[] hits = searchResponse.getHits().getHits();for (SearchHit hit : hits) {String source = hit.getSourceAsString();HotelDoc hotelDoc = JSON.parseObject(source, HotelDoc.class);System.out.println(hotelDoc);}}

高亮

    public void testHighLight() throws IOException {SearchRequest searchRequest = new SearchRequest("hotel");searchRequest.source().query(QueryBuilders.matchQuery("all","如家"));searchRequest.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);SearchHit[] hits = searchResponse.getHits().getHits();for (SearchHit hit : hits) {String source = hit.getSourceAsString();HotelDoc hotelDoc = JSON.parseObject(source, HotelDoc.class);Map<String, HighlightField> highlightFields = hit.getHighlightFields();if(!highlightFields.isEmpty()){HighlightField highlightField = highlightFields.get("name");//一般value只有一个元素,取数组第一个String name = highlightField.getFragments()[0].string();hotelDoc.setName(name);}System.out.println(hotelDoc);}}

算分
让指定酒店置顶 (function_score )广告业务
在这里插入图片描述

    // 算分控制FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(// 原始查询boolQueryBuilder,// FunctionScore 数组new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.termQuery("isAD", true),ScoreFunctionBuilders.weightFactorFunction(10))});

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43778.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

耗资170亿美元?三星电子在得克萨斯州建设新的半导体工厂

据报道&#xff0c;三星电子在得克萨斯州泰勒市建设的新的半导体工厂预计将于2024年下半年投入运营。这座工厂将成为三星电子在美国的第二座芯片代工厂&#xff0c;与位于得克萨斯州奥斯汀市的第一座工厂相距不远。 此次投资将耗资约170亿美元&#xff0c;显示了三星电子在半导…

Slingshot | 细胞分化轨迹的这样做比较简单哦!~(一)

1写在前面 今天是医师节&#xff0c;祝各位医护节日快乐&#xff0c;夜班平安&#xff0c;病历全是甲级&#xff0c;没有错误。&#x1f970; 不知道各位医师节的福利是什么&#xff01;&#xff1f;&#x1f602; 我们医院是搞了义诊活动&#xff0c;哈哈哈哈哈哈哈。&#x1…

C# 图像处理之灰色图转化为RGB图像

咨询通义千问的“C# 图像处理之灰色图转化为RGB图像”结果&#xff0c;看看如何&#xff1a; 在C#中&#xff0c;可以使用Image类来处理图像。要将灰色图像转换为RGB图像&#xff0c;可以按照以下步骤进行操作&#xff1a; 1.创建一个灰色图像对象。 Image grayImage Imag…

Python可视化在量化交易中的应用(16)_Seaborn热力图

Seaborn中热力图的绘制方法 seaborn中绘制热力图使用的是sns.heatmap()函数&#xff1a; sns.heatmap(data,vmin,vmax,cmap,center,robust,annot,fmt‘.2g’,annot_kws,linewidths0,linecolor‘white’,cbar,cbar_kws,cbar_ax,square,xticklabels‘auto’,yticklabels‘auto’…

Linux 进程间通信——消息队列

一、消息队列的原理 消息队列提供了一种从一个进程向另一个进程发送一个数据块的方法。每个数据块都被认为含有一个类型&#xff0c;接收进程可以独立接收含有不同类型值得数据库。 消息实际上是一个数据块&#xff0c;这个数据块是一个结构体&#xff0c;结构体由自己命名。消…

Aurix TC3xx系列MCU ResourceM模块配置(多核资源分配)

文章目录 1 前言2 配置方法 >>返回总目录<< 1 前言 为减轻主核的负载率或者平衡各个核的资源分配&#xff0c;通常需要把一些MCU内部资源分配到从核上&#xff0c;在EB tresos工具中&#xff0c;通过ResourceM模块实现多核资源分配。 2 配置方法 ResourceMMaste…

mysql数据传输到mssql

一、找开Navicat Premium 12 此时目标数据库会创建一个同名的表

CSS3 -- mix-blend-mode属性详解

一&#xff1a;简介 在上篇文章中&#xff0c;我们利用css的mix-blend-mode属性做了一个简单的文字颜色自适应背景颜色的效果&#xff0c;这篇文章我来解释一下这个属性的用法以及一些简单的案例。 二&#xff1a;介绍 mix-blend-mode 是一种 CSS 属性&#xff0c;它定义了一…

在 Spring Boot 中使用 OpenAI ChatGPT API

1、开始咯 我们来看看如何在 Spring Boot 中调用 OpenAI ChatGPT API。 我们将创建一个 Spring Boot 应用程序&#xff0c;该应用程序将通过调用 OpenAI ChatGPT API 生成对提示的响应。 2、OpenAI ChatGPT API 在开始具体讲解之前&#xff0c;让我们先探讨一下我们将在本教…

学习笔记:Opencv实现拉普拉斯图像锐化算法

2023.8.19 为了在暑假内实现深度学习的进阶学习&#xff0c;Copy大神的代码&#xff0c;记录学习日常 图像锐化的百科&#xff1a; 图像锐化算法-sharpen_lemonHe_的博客-CSDN博客 在环境配置中要配置opencv&#xff1a; pip install opencv-contrib-python Code and lena.png…

一种基于springboot、redis的分布式任务引擎的实现(一)

总体思路是&#xff0c;主节点接收到任务请求&#xff0c;将根据任务情况拆分成多个任务块&#xff0c;将任务块标识的主键放入redis。发送redis消息&#xff0c;等待其他节点运行完毕&#xff0c;结束处理。接收到信息的节点注册本节点信息到redis、开启多线程、获取任务块、执…

OpenCV基础知识(5)— 几何变换

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。OpenCV中的几何变换是指改变图像的几何结构&#xff0c;例如大小、角度和形状等&#xff0c;让图像呈现出缩放、翻转、旋转和透视效果。这些几何变换操作都涉及复杂、精密的计算。OpenCV将这些计算过程都封装成了非常灵活的…

开源了一套基于springboot+vue+uniapp的商城,包含分类、sku、商户管理、分销、会员、适合企业或个人二次开发

RuoYi-Mall-JAVA商城-电商系统简介 开源了一套基于若依框架&#xff0c;SringBoot2MybatisPlusSpringSecurityjwtredisVueUniapp的前后端分离的商城系统&#xff0c; 包含分类、sku、商户管理、分销、会员、适合企业或个人二次开发。 前端采用Vue、Element UI&#xff08;ant…

Mac terminal 每次打开都要重新配置文件

1. 问题描述 每次打开 Terminal&#xff0c;base_profile文件中配置的内容就不生效&#xff0c;需要重新执行source ~/.bash_profile才可以使用。 2. 原因分析 zsh加载的是~/.zshrc文件&#xff0c;而.zshrc 文件中并没有定义任务环境变量。 3. 解决办法 在~/.zshrc文件末尾添…

CF1017B The Bits 题解

想死人的思维题哈哈。 题目传送门 题目意思&#xff1a; 给你两个二进制串&#xff0c;你可以将第一个二进制串的任意两个位置的数字调换&#xff0c;问有多少种方案可以让这两个二进制串按位或的结果改变&#xff1f; 思路&#xff1a; 要从按位或的性质上开始思考。 按位…

Debian10: 安装nut服务器(UPS)

UPS说明&#xff1a; UPS的作用就不必讲了&#xff0c;我选择是SANTAKTGBOX-850&#xff0c;规格为 850VA/510W&#xff0c;可以满足所需&#xff0c;关键是Debian10自带了驱动可以支持&#xff0c;免去安装驱动&#xff0c;将UPS通过USB线连接服务器即可&#xff0c;如下图所示…

Vue初识别--环境搭建--前置配置过程

问题一&#xff1a; 在浏览器上的扩展程序上添加了vue-devtools后不生效&#xff1a; 解决方式&#xff1a;打开刚加入的扩展工具Vue.js devtools的允许访问文件地址设置 问题二&#xff1a;Vue新建一个项目 创建一个空文件夹hrsone&#xff0c;然后在VSCode中打开这个空文件夹…

RequestRespons

文章目录 Request&Respons1 Request和Response的概述2 Request对象2.1 Request继承体系2.2 Request获取请求数据2.2.1 获取请求行数据2.2.2 获取请求头数据2.2.3 获取请求体数据2.2.4 获取请求参数的通用方式 2.3 IDEA快速创建Servlet2.4 请求参数中文乱码问题2.4.1 POST请…

基于Python的微博大数据舆情分析,舆论情感分析可视化系统,可作为Python毕业设计

运行效果图 基于Python的微博大数据舆情分析&#xff0c;舆论情感分析可视化系统 系统介绍 微博舆情分析系统&#xff0c;项目后端分爬虫模块、数据分析模块、数据存储模块、业务逻辑模块组成。 先后进行了数据获取和筛选存储&#xff0c;对存储后的数据库数据进行提取分析处…

iptables安全与防火墙

防火墙 防火墙主要作用是隔离功能&#xff0c;它是部署在网络边缘或主机边缘&#xff1b;另外在生产中防火墙的主要作用是&#xff1a;决定哪些数据可以被外网访问以及哪些数据可以进入内网访问&#xff1b;顾名思义防火墙处于TCP协议中的网络层。 防火墙分类&#xff1a; 软…