OpenCV基础知识(5)— 几何变换

前言:Hello大家好,我是小哥谈。OpenCV中的几何变换是指改变图像的几何结构,例如大小、角度和形状等,让图像呈现出缩放、翻转、旋转和透视效果。这些几何变换操作都涉及复杂、精密的计算。OpenCV将这些计算过程都封装成了非常灵活的方法,开发者只需要修改一些参数,就可以看到图像的变换效果。本节课就介绍几种常见的几何变换效果及其实现方法。🌈

前期回顾:

           史上最全OpenCV常用方法及使用说明汇总,建议收藏!

           OpenCV基础知识(1)— OpenCV概述

           OpenCV基础知识(2)— 图像处理的基本操作

           OpenCV基础知识(3)— 图像数字化基础(像素、色彩空间)

           OpenCV基础知识(4)— 绘制图形      

           目录

🚀1.缩放

💥💥1.1 dsize参数实现缩放

💥💥1.2 fx参数和fy参数实现缩放

🚀2.翻转

🚀3.旋转

🚀4.透视

🚀1.缩放

”表示缩小,“”表示放大,通过OpenCV中提供的resize()方法就可以随意更改图像的大小比例,其语法格式如下:

dst = cv2.resize(src,dsize,fx,fy,interpolation)

参数说明:

src:原始图像

dsize:输出图像的大小,格式为(宽,高),单位为像素。

fx:可选参数。水平方向的缩放比例。

fy:可选参数。垂直方向的缩放比例。

interpolation:可选参数。缩放的插值方式,在图像缩小或者放大时需要删减或补充像素,该参数可以指定使用哪种算法对像素进行增减。建议使用默认值。

返回值说明:

dst:缩放之后的图像

🍀resize()方法有两种使用方式,一种是通过dsize参数实现缩放,另一种是通过 fx fy 参数实现缩放,下面分别进行介绍。

💥💥1.1 dsize参数实现缩放

dsize参数的格式是一个元组,例如(100,200),表示将图像按照宽100像素、高200像素的大小进行缩放。如果使用dsize参数,则可以不写 fx fy 参数。

代码如下:

import cv2
img = cv2.imread("1.jpg")  # 读取图像
dst1 = cv2.resize(img, (300, 300))  # 按照宽300像素、高300像素的大小进行缩放
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst1", dst1)  # 显示缩放图像
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()   # 释放所有窗体

原始图像:

缩放后图像:

💥💥1.2 fx参数和fy参数实现缩放

使用 fx 参数和 fy 参数控制缩放的时候,dsize参数值必须使用None,否则 fx fy 就会失效。

fx 参数和 fy 参数可以使用浮点值,小于1的值表示缩小,大于1的值表示放大。

代码如下:

import cv2
img = cv2.imread("1.jpg")  # 读取图像
dst3 = cv2.resize(img, None, fx=1 / 3, fy=1 / 2)  # 将宽缩小到原来的1/3、高缩小到原来的1/2
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst3", dst3)  # 显示缩放图像
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

 原始图像:

 缩放后图像:


🚀2.翻转

水平线被称为X轴,垂直线被称为Y轴。图像沿着X轴或者Y轴翻转之后,可以呈现出镜面倒影的效果。OpenCV通过cv2.flip()方法实现翻转效果,其语法如下:

dst = cv2.flip(src,flipCode)

参数说明:

src:原始图像

flipCode:翻转类型,类型值如下表所示。

参数值含义
0沿着X轴翻转
正数沿着Y轴翻转
负数同时沿着X轴、Y轴翻转

返回值说明:

dst:翻转之后的图像

代码如下:

import cv2
img = cv2.imread("1.jpg")  # 读取图像
dst1 = cv2.flip(img, 0)  # 沿X轴翻转
dst2 = cv2.flip(img, 1)  # 沿Y轴翻转
dst3 = cv2.flip(img, -1)  # 同时沿X轴、Y轴翻转
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst1", dst1)  # 显示翻转之后的图像
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

效果如图所示:


🚀3.旋转

让图像旋转也是通过M矩阵实现的,但得出这个矩阵需要做很复杂的运算,于是OpenCV提供了getRotationMatrix2D()方法来自动计算出旋转图像的M矩阵。其语法格式如下所示:

M = cv2.getRotationMatrix2D(center,angle,scale)

参数说明:

center:旋转的中心点坐标

angle:旋转的角度(不是弧度)。正数表示逆时针旋转,负数表示顺时针旋转。

scale:缩放比例,浮点类型。如果取值为1,表示图像保持原来的比例。

返回值说明:

M:方法计算出的仿射矩阵

🍀比如让图像逆时针旋转30°的同时缩小到原来的80%,代码如下:

import cv2
img = cv2.imread("1.jpg")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
center = (rows / 2, cols / 2)  # 图像的中心点
M = cv2.getRotationMatrix2D(center, 30, 0.8)  # 以图像为中心,逆时针旋转30度,缩放0.8倍
dst = cv2.warpAffine(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

 效果如图所示:


🚀4.透视

如果说仿射是让图像在二维平面中变形,那么透视就是让图像在三维空间中变形。从不同的角度观察物体,会看到不同的变形画面。例如,矩阵会变成不规则的四边形、直角会变成锐角或钝角、圆形会变成椭圆等,这种变形之后的画面就是透视图。🌴

OpenCV通过warpPerspective()方法来实现透视效果,其语法如下:

dst = cv2.warpPerspective(src,M,dsize,flags,borderMode,borderValue)

参数说明:

src:原始图像

M:一个3行3列的矩阵,根据此矩阵中的值变换原图中的像素位置。

dsize:输出图像的尺寸大小

flags:可选参数,插值方式,建议使用默认值。

borderMode:可选参数,边界类型,建议使用默认值。

borderValue:可选参数,边界值,默认为0,建议使用默认值。

返回值说明:

dst:经过透视变换后输出图像

warpPerspective()方法也需要通过M矩阵来计算透视效果,但得出这个矩阵需要做很复杂的运算,于是OpenCV提供了getPerspectiveTransform()方法来自动计算M矩阵。getPerspectiveTransform()方法的语法格式如下所示:

M = cv2.getPerspectiveTransform(src,dst)

参数说明:

src:原图四个点坐标,格式为4行2列的32位浮点数列表,例如:[[0,0],[1,0],[0,1],[1,1]]。

dst:透视图的四个点坐标,格式与src一样。

返回值说明:

M:方法计算出的仿射矩阵

🍀模拟从底部观察图像得到的透视效果,将图像顶部边缘收窄,底部边缘保持不变,代码如下:

import cv2
import numpy as np
img = cv2.imread("1.jpg")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
p1 = np.zeros((4, 2), np.float32)  # 32位浮点型空列表,保存原图四个点
p1[0] = [0, 0]  # 左上角点坐标
p1[1] = [cols - 1, 0]  # 右上角点坐标
p1[2] = [0, rows - 1]  # 左下角点坐标
p1[3] = [cols - 1, rows - 1]  # 右下角点坐标
p2 = np.zeros((4, 2), np.float32)  # 32位浮点型空列表,保存透视图四个点
p2[0] = [90, 0]  # 左上角点坐标,向右移动90像素
p2[1] = [cols - 90, 0]  # 右上角点坐标,向左移动90像素
p2[2] = [0, rows - 1]  # 左下角点坐标,位置不变
p2[3] = [cols - 1, rows - 1]  # 右下角点坐标,位置不变
M = cv2.getPerspectiveTransform(p1, p2)  # 根据四个点的变化轨迹计算出M矩阵
dst = cv2.warpPerspective(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow('img', img)  # 显示原图
cv2.imshow('dst', dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

 效果如图所示:


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43765.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源了一套基于springboot+vue+uniapp的商城,包含分类、sku、商户管理、分销、会员、适合企业或个人二次开发

RuoYi-Mall-JAVA商城-电商系统简介 开源了一套基于若依框架,SringBoot2MybatisPlusSpringSecurityjwtredisVueUniapp的前后端分离的商城系统, 包含分类、sku、商户管理、分销、会员、适合企业或个人二次开发。 前端采用Vue、Element UI(ant…

Debian10: 安装nut服务器(UPS)

UPS说明: UPS的作用就不必讲了,我选择是SANTAKTGBOX-850,规格为 850VA/510W,可以满足所需,关键是Debian10自带了驱动可以支持,免去安装驱动,将UPS通过USB线连接服务器即可,如下图所示…

Vue初识别--环境搭建--前置配置过程

问题一: 在浏览器上的扩展程序上添加了vue-devtools后不生效: 解决方式:打开刚加入的扩展工具Vue.js devtools的允许访问文件地址设置 问题二:Vue新建一个项目 创建一个空文件夹hrsone,然后在VSCode中打开这个空文件夹…

RequestRespons

文章目录 Request&Respons1 Request和Response的概述2 Request对象2.1 Request继承体系2.2 Request获取请求数据2.2.1 获取请求行数据2.2.2 获取请求头数据2.2.3 获取请求体数据2.2.4 获取请求参数的通用方式 2.3 IDEA快速创建Servlet2.4 请求参数中文乱码问题2.4.1 POST请…

基于Python的微博大数据舆情分析,舆论情感分析可视化系统,可作为Python毕业设计

运行效果图 基于Python的微博大数据舆情分析,舆论情感分析可视化系统 系统介绍 微博舆情分析系统,项目后端分爬虫模块、数据分析模块、数据存储模块、业务逻辑模块组成。 先后进行了数据获取和筛选存储,对存储后的数据库数据进行提取分析处…

postgresql 分类排名

postgresql 分类排名 排名窗口函数示例CUME_DIST 和 NTILE 排名窗口函数 排名窗口函数用于对数据进行分组排名。常见的排名窗口函数包括: • ROW_NUMBER,为分区中的每行数据分配一个序列号,序列号从 1 开始分配。 • RANK,计算每…

数学建模之“灰色预测”模型

灰色系统分析法在建模中的应用 1、CUMCM2003A SARS的传播问题 2、CUMCM2005A长江水质的评价和预测CUMCM2006A出版社的资源配置 3、CUMCM2006B艾滋病疗法的评价及疗效的预测问题 4、CUMCM2007A 中国人口增长预测 灰色系统的应用范畴大致分为以下几方面: (1)灰色关…

“深度学习”学习日记:Tensorflow实现VGG每一个卷积层的可视化

2023.8.19 深度学习的卷积对于初学者是非常抽象,当时在入门学习的时候直接劝退一大班人,还好我坚持了下来。可视化时用到的图片(我们学校的一角!!!)以下展示了一个卷积和一次Relu的变化 作者使…

IronPDF for .NET Crack

IronPDF for .NET Crack ronPDF现在将等待HTML元素加载后再进行渲染。 IronPDF现在将等待字体加载后再进行渲染。 添加了在绘制文本时指定旋转的功能。 添加了在保存为PDFA时指定自定义颜色配置文件的功能。 IronPDF for.NET允许开发人员在C#、F#和VB.NET for.NET Core和.NET F…

深入探讨API接口测试:从基础到高级策略

引言:API测试的重要性 在当前的技术趋势中,API(应用程序接口)已经成为连接各种系统和服务的基石。API不仅仅是大型企业的领域,中小型公司和初创公司也越来越依赖API来拓展他们的业务功能和跨系统通信。正因如此&#…

虚拟机问题

虚拟机无法识别USB设备 经排查为VMware USB Arbitration Service 没有启动,但是VMware USB Arbitration Service依赖于VMware Workstation Server启动 VMware USB Arbitration Service(VMUSBArbService)是由 VMware 虚拟化软件提供的一个服务,用于协调和管理主机系统上的…

Python数据分析实战-*和**实现可变多参数的传入或变量的拆解(附源码和实现效果)

实现功能 *和**实现多参数的传入或变量的拆解 实现代码 # 1、实现多参数的传入 def one(a,*b):"""a是一个普通传入参数,*b是一个非关键字星号参数"""print(b) one(1,2,3,4,5,6) 其中,第一个的输入可以理解为&#xff1a…

【虫洞攻击检测】使用多层神经网络的移动自组织网络中的虫洞攻击检测研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

阿里Canal学习笔记

github地址 canal 使用IDEA打开&#xff0c;注意国内加载慢的问题&#xff0c;解决方式如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <settings xmlns"http://maven.apache.org/SETTINGS/1.0.0"xmlns:xsi"http://w…

SpringBoot中优雅的实现隐私数据脱敏(提供Gitee源码)

前言&#xff1a;在实际项目开发中&#xff0c;可能会对一些用户的隐私信息进行脱敏操作&#xff0c;传统的方式很多都是用replace方法进行手动替换&#xff0c;这样会由很多冗余的代码并且后续也不好维护&#xff0c;本期就讲解一下如何在SpringBoot中优雅的通过序列化的方式去…

设计模式之备忘录模式(Memento)的C++实现

1、备忘录模式的提出 在软件功能开发过程中&#xff0c;某些对象的状态在转换过程中&#xff0c;由于业务场景需要&#xff0c;要求对象能够回溯到对象之前某个点的状态。如果使用一些共有接口来让其他对象得到对象的状态&#xff0c;便会暴露对象的实现细节。备忘录模式是在不…

【学会动态规划】单词拆分(24)

目录 动态规划怎么学&#xff1f; 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后&#xff1a; 动态规划怎么学&#xff1f; 学习一个算法没有捷径&#xff0c;更何况是学习动态规划&#xff0c; 跟我…

【模拟集成电路】反馈系统——基础到进阶(一)

【模拟集成电路】反馈系统——基础到进阶 前言1 概述2 反馈电路特性2.1增益灵敏度降低2.2 终端阻抗变化2.3 带宽拓展2.4 非线性减小 3 放大器分类4 反馈检测和返回机制4.1 按照检测物理量分类4.2 按照检测拓扑连接分类 5 反馈结构分析6 二端口方法7 波特方法6 麦德布鲁克方法 前…

VS2015打开Qt的pro项目文件 报错

QT报错&#xff1a;Project ERROR: msvc-version.conf loaded but QMAKE_MSC_VER isn‘t set 解决方法&#xff1a; 找到本机安装的QT路径&#xff0c;找到“msvc-version.conf”文件&#xff0c;用记事本打开&#xff0c; 在其中添加版本“QMAKE_MSC_VER 1900”保存即可。 …

CSS:filter滤镜 详解(用法 + 代码 + 例子 + 效果)

文章目录 filter 滤镜blur() 模糊度例子 渐变光晕 brightness() 元素亮度contrast() 对比度grayscale() 元素灰度hue-rorate() 色相opacity() 透明度invert() 反转颜色saturate() 饱和度 backdrop-filter 蒙版&#xff0c;滤镜例子 卷轴展开 filter 滤镜 动图为效果添加前后对…