“深度学习”学习日记:Tensorflow实现VGG每一个卷积层的可视化

2023.8.19

深度学习的卷积对于初学者是非常抽象,当时在入门学习的时候直接劝退一大班人,还好我坚持了下来。可视化时用到的图片(我们学校的一角!!!)以下展示了一个卷积和一次Relu的变化

 作者使用的GPU是RTX 3050ti 在这张图像上已经出现了Cuda out of memory了。防止其他                                            图片出现类似情况:附上这张cat.jpg可以完成实验

             

代码是Copy大神的,用tensorflow1写的,使用tensoflow2的伙伴们,记得添上:

import tensorflow.compat.v1 as tf

Code:

# coding: utf-8# # 使用预训练的VGG网络# In[1]:import scipy.io
import numpy as np
import os
import scipy.misc
import matplotlib.pyplot as plt
import tensorflow as tf
import imageioimport tensorflow.compat.v1 as tf# get_ipython().magic(u'matplotlib inline')
print("所有包载入完毕")# In[2]:# 下载预先训练好的vgg-19模型,为Matlab的.mat格式,之后会用scipy读取
# (注意此版本模型与此处http://www.vlfeat.org/matconvnet/pretrained/最新版本不同)
import os.pathif not os.path.isfile('./data/imagenet-vgg-verydeep-19.mat'):os.system(u'wget -O data/imagenet-vgg-verydeep-19.mat http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat')# get_ipython().system(u'wget -O data/imagenet-vgg-verydeep-19.mat http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat')# # 定义网络# In[3]:def net(data_path, input_image):layers = ('conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1','conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2','conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3','relu3_3', 'conv3_4', 'relu3_4', 'pool3','conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3','relu4_3', 'conv4_4', 'relu4_4', 'pool4','conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3','relu5_3', 'conv5_4', 'relu5_4')data = scipy.io.loadmat(data_path)mean_pixel = [103.939, 116.779, 123.68]weights = data['layers'][0]net = {}current = input_imagefor i, name in enumerate(layers):kind = name[:4]if kind == 'conv':kernels, bias = weights[i][0][0][0][0]# matconvnet: weights are [width, height, in_channels, out_channels]# tensorflow: weights are [height, width, in_channels, out_channels]kernels = np.transpose(kernels, (1, 0, 2, 3))bias = bias.reshape(-1)current = _conv_layer(current, kernels, bias)elif kind == 'relu':current = tf.nn.relu(current)elif kind == 'pool':current = _pool_layer(current)net[name] = currentassert len(net) == len(layers)return net, mean_pixel, layersprint("Network for VGG ready")# # 定义模型# In[4]:def _conv_layer(input, weights, bias):conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),padding='SAME')return tf.nn.bias_add(conv, bias)def _pool_layer(input):return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),padding='SAME')def preprocess(image, mean_pixel):return image - mean_pixeldef unprocess(image, mean_pixel):return image + mean_pixeldef imread(path):# return scipy.misc.imread(path).astype(np.float)return imageio.imread(path)def imsave(path, img):img = np.clip(img, 0, 255).astype(np.uint8)scipy.misc.imsave(path, img)print("Functions for VGG ready")# # 运行# In[5]:cwd = os.getcwd()
VGG_PATH = cwd + "/data/imagenet-vgg-verydeep-19.mat"
IMG_PATH = cwd + "/images/cat.jpg"
input_image = imread(IMG_PATH)
shape = (1,) + input_image.shape  # (h, w, nch) =>  (1, h, w, nch)
with tf.Graph().as_default(), tf.Session() as sess:image = tf.placeholder('float', shape=shape)nets, mean_pixel, all_layers = net(VGG_PATH, image)input_image_pre = np.array([preprocess(input_image, mean_pixel)])layers = all_layers  # For all layers# layers = ('relu2_1', 'relu3_1', 'relu4_1')for i, layer in enumerate(layers):print("[%d/%d] %s" % (i + 1, len(layers), layer))features = nets[layer].eval(feed_dict={image: input_image_pre})print(" Type of 'features' is ", type(features))print(" Shape of 'features' is %s" % (features.shape,))# Plot response if 1:plt.figure(i + 1, figsize=(10, 5))plt.matshow(features[0, :, :, 0], cmap=plt.cm.gray, fignum=i + 1)plt.title("" + layer)plt.colorbar()plt.show()

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43754.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IronPDF for .NET Crack

IronPDF for .NET Crack ronPDF现在将等待HTML元素加载后再进行渲染。 IronPDF现在将等待字体加载后再进行渲染。 添加了在绘制文本时指定旋转的功能。 添加了在保存为PDFA时指定自定义颜色配置文件的功能。 IronPDF for.NET允许开发人员在C#、F#和VB.NET for.NET Core和.NET F…

深入探讨API接口测试:从基础到高级策略

引言:API测试的重要性 在当前的技术趋势中,API(应用程序接口)已经成为连接各种系统和服务的基石。API不仅仅是大型企业的领域,中小型公司和初创公司也越来越依赖API来拓展他们的业务功能和跨系统通信。正因如此&#…

虚拟机问题

虚拟机无法识别USB设备 经排查为VMware USB Arbitration Service 没有启动,但是VMware USB Arbitration Service依赖于VMware Workstation Server启动 VMware USB Arbitration Service(VMUSBArbService)是由 VMware 虚拟化软件提供的一个服务,用于协调和管理主机系统上的…

Python数据分析实战-*和**实现可变多参数的传入或变量的拆解(附源码和实现效果)

实现功能 *和**实现多参数的传入或变量的拆解 实现代码 # 1、实现多参数的传入 def one(a,*b):"""a是一个普通传入参数,*b是一个非关键字星号参数"""print(b) one(1,2,3,4,5,6) 其中,第一个的输入可以理解为&#xff1a…

【虫洞攻击检测】使用多层神经网络的移动自组织网络中的虫洞攻击检测研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

阿里Canal学习笔记

github地址 canal 使用IDEA打开&#xff0c;注意国内加载慢的问题&#xff0c;解决方式如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <settings xmlns"http://maven.apache.org/SETTINGS/1.0.0"xmlns:xsi"http://w…

SpringBoot中优雅的实现隐私数据脱敏(提供Gitee源码)

前言&#xff1a;在实际项目开发中&#xff0c;可能会对一些用户的隐私信息进行脱敏操作&#xff0c;传统的方式很多都是用replace方法进行手动替换&#xff0c;这样会由很多冗余的代码并且后续也不好维护&#xff0c;本期就讲解一下如何在SpringBoot中优雅的通过序列化的方式去…

设计模式之备忘录模式(Memento)的C++实现

1、备忘录模式的提出 在软件功能开发过程中&#xff0c;某些对象的状态在转换过程中&#xff0c;由于业务场景需要&#xff0c;要求对象能够回溯到对象之前某个点的状态。如果使用一些共有接口来让其他对象得到对象的状态&#xff0c;便会暴露对象的实现细节。备忘录模式是在不…

【学会动态规划】单词拆分(24)

目录 动态规划怎么学&#xff1f; 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后&#xff1a; 动态规划怎么学&#xff1f; 学习一个算法没有捷径&#xff0c;更何况是学习动态规划&#xff0c; 跟我…

【模拟集成电路】反馈系统——基础到进阶(一)

【模拟集成电路】反馈系统——基础到进阶 前言1 概述2 反馈电路特性2.1增益灵敏度降低2.2 终端阻抗变化2.3 带宽拓展2.4 非线性减小 3 放大器分类4 反馈检测和返回机制4.1 按照检测物理量分类4.2 按照检测拓扑连接分类 5 反馈结构分析6 二端口方法7 波特方法6 麦德布鲁克方法 前…

VS2015打开Qt的pro项目文件 报错

QT报错&#xff1a;Project ERROR: msvc-version.conf loaded but QMAKE_MSC_VER isn‘t set 解决方法&#xff1a; 找到本机安装的QT路径&#xff0c;找到“msvc-version.conf”文件&#xff0c;用记事本打开&#xff0c; 在其中添加版本“QMAKE_MSC_VER 1900”保存即可。 …

CSS:filter滤镜 详解(用法 + 代码 + 例子 + 效果)

文章目录 filter 滤镜blur() 模糊度例子 渐变光晕 brightness() 元素亮度contrast() 对比度grayscale() 元素灰度hue-rorate() 色相opacity() 透明度invert() 反转颜色saturate() 饱和度 backdrop-filter 蒙版&#xff0c;滤镜例子 卷轴展开 filter 滤镜 动图为效果添加前后对…

界面组件Telerik UI for WinForms R2 2023——拥有VS2022暗黑主题

Telerik UI for WinForms拥有适用Windows Forms的110多个令人惊叹的UI控件。所有的UI for WinForms控件都具有完整的主题支持&#xff0c;可以轻松地帮助开发人员在桌面和平板电脑应用程序提供一致美观的下一代用户体验。 Telerik UI for WinForms R2 2023于今年6月份发布&…

Blender 混合现实3D模型制作指南【XR】

本教程分步展示如何&#xff1a; 减少 3D 模型的多边形数量&#xff0c;使其满足 Microsoft Dynamics 365 Guides 和使用 Microsoft Power Apps 创建的应用程序中包含的混合现实组件的特定性能目标的性能需求。将 3D 模型的多种材质&#xff08;颜色&#xff09;组合成可应用于…

​Kubernetes的演变:从etcd到分布式SQL的过渡

DevRel领域专家Denis Magda表示&#xff0c;他偶然发现了一篇解释如何用PostgreSQL无缝替换etcd的文章。该文章指出&#xff0c;Kine项目作为外部etcd端点&#xff0c;可以将Kubernetes etcd请求转换为底层关系数据库的SQL查询。 受到这种方法的启发&#xff0c;Magda决定进一步…

求Win11系统virtualbox+vagrant安装MacOS虚拟机

文章目录 一、背景二、素材2.1、virtualboxvagrant 三、问题3.1、安装失败3.2、第二个失败3.3、网络说 四、求助 一、背景 题主&#xff0c;主要是穷&#xff0c;没钱买mac笔记本或相关系统的苹果产品&#xff0c;哈哈&#xff0c;偶尔也有用过MacOS系统&#xff0c;只是还没有…

actuator/prometheus使用pushgateway上传jvm监控数据

场景 准备 prometheus已经部署pushgateway服务&#xff0c;访问{pushgateway.server:9091}可以看到面板 实现 基于springboot引入支持组件&#xff0c;版本可以 <!--监控检查--><dependency><groupId>org.springframework.boot</groupId><artifa…

H3C交换机如何配置本地端口镜像并在PC上使用Wireshake抓包

环境: H3C S6520-26Q-SI version 7.1.070, Release 6326 Win 10 专业版 Wireshake Version 4.0.3 问题描述: H3C交换机如何配置本地端口镜像并在PC上使用Wireshake抓包 解决方案: 配置交换机本地端口镜像 1.进入系统视图,并创建本地镜像组1 <H3C>system-vie…

高效反编译luac文件

对于游戏开发人员,有时候希望从一些游戏apk中反编译出源代码,进行学习,但是如果你触碰到法律边缘,那么你要非常小心。 这篇文章,我针对一些用lua写客户端或者服务器的编译过的luac文件进行反编译,获取其源代码的过程。 这里我不赘述如何反编译解压apk包的过程了,只说重点…

【【STM32之GPIO】】

STM32之GPIO 学完了正点原子自带的视频课之后感觉仍然一知半解现在更新一下来自其他版本的STM32学习 GPIO 就是 General Purpose Input Output 中文名叫通用输入输出口 可配置8种输入输出模式 引脚电平 0V~3.3V 部分引脚可容忍5V 输出模式下可控制端口输出高低电平&#xff…