无脑入门pytorch系列(四)—— scatter_

本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思就只能【看懂代码】,无法【理解代码】。

目录

  • 官方定义
  • demo
  • one-hot

官方定义

torch.tensor.scatter_是PyTorch中的一个函数,用于将指定索引处的值替换为给定的值。

函数定义:

Tensor.scatter_(dim, index, src, reduce=None) → Tensor

官方解释:

  • 将张量src中的所有值写入索引张量中指定的index处的self。

  • 对于src中的每个值,它的输出索引由其在src中的索引(dimension != dim)和在index中对应的值(dimension = dim)指定。

非常难以理解,十分抽象,从我个人的角度来说就是:

  • 第一个参数dim表示维度,即在第几维度处理数据,保持其它维度不变。
  • reduce参数是一个可选参数,用于指定如何在执行散射(scatter)操作时对重复的索引值进行合并或聚合。
  • index则是需要填充的列的索引,即根据维度从src中取对应的值填充到tensor中去。

怎么映射的,比如一个一个3维张量:

self[index[i][j][k]][j][k] = src[i][j][k]  # if dim == 0
self[i][index[i][j][k]][k] = src[i][j][k]  # if dim == 1
self[i][j][index[i][j][k]] = src[i][j][k]  # if dim == 2

官方的文档如下,TORCH.TENSOR.SCATTER_:

image-20230818104242738

即使如此理解起来也是很复杂,下面从例子中去理解:

demo

下面是一个官方文档给出的例子:

import torchsrc = torch.Tensor([[-1.0276,  0.2673, -1.1752, -0.8823],[-0.6447, -0.8256,  0.1542, -0.4242]])
print(src)output = torch.zeros(2, 5)
index = torch.tensor([[3, 1, 2, 0], [1, 2, 0, 3]])output = output.scatter(1, index, src)
print(output)

输出的结果:

image-20230818142004545

我们一步步理解代码:

  1. 首先,定义了一个src张量,后续output即从src中取值。
  2. 其次,定义了output,其值为二行五列的全零张量,后续对output进行修改。
  3. 接着,定义了index,即从src取值的索引。
  4. 最后,根据index从src取值填充到output中,即完成操作。

那么具体是如何取值的呢?

首先,dim = 1,意味着从维度值为1的地方取值,维度值为0的地方不变,那就是:

self[i][index[i][j]] = src[i][j]  # if dim == 1

具体来说:

i = 0, j = 0时,output[0][index[0][0]] = src[0][0],因为index[0][0] = 3,所以output[0][3] = src[0][0] = -1.0276,这时候我们检查输出的output值,确实是-1.0276

同理:

i = 0, j = 1: output[0][index[0][1]] = output[0][1] = src[0][1] = 0.2673

i = 0, j = 2: output[0][index[0][2]] = output[0][2] = src[0][2] = -1.1752

one-hot

作者在学习该函数时实在遇到one-hot编码时遇到的,而该函数在one-hot中应用很广:

index = torch.tensor([[3], [2], [0], [1]])
onehot = torch.zeros(4, 4)
onehot.scatter_(1, index, 1)
print(onehot)

image-20230818143854519

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43313.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解内存 —— 函数栈帧的创建与销毁

前言 一位优秀的程序员,必须对内存的分布有深刻的理解,在初学编程的时候,往往有诸如以下很多问题困扰着初学者,而通过今天的分享,我们就可以通过自己的观察,将这些问题统统解决掉 局部变量是怎么创建的&…

keepalived集群

keepalived概述 keepalived软件就是通过vrrp协议来实现高可用功能。 VRRP通信原理 VRRP就是虚拟路由冗余协议,它的出现就是为了解决静态路由的单点故障。 VRRP是通过一种竞选一种协议机制来将路由交个某台VRRP路由器。 VRRP 用IP多播的方式(多播地…

C语言中常见的一些语法概念和功能

常用代码: 程序入口:int main() 函数用于定义程序的入口点。 输出:使用 printf() 函数可以在控制台打印输出。 输入:使用 scanf() 函数可以接收用户的输入。 条件判断:使用 if-else 语句可以根据条件执行不同的代码…

【力扣每日一题】2023.8.15 字符中的查找与替换

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 题目很长,简而言之就是检查字符串中对应索引的位置是否有特定的字符串,如果有,那么替换,返…

Ceph如何操作底层对象数据

1.基本原理介绍 1.1 ceph中的对象(object) 在Ceph存储中,一切数据最终都会以对象(Object)的形式存储在硬盘(OSD)上,每个的Object默认大小为4M。 通过rados命令,可以查看一个存储池中的所有object信息,例如…

Optional的基础运用

Optional的基础运用 简介代码示例 简介 代码示例 package org.example;import org.junit.Test;import java.util.Optional;public class OptionalTest {Testpublic void advance() {String str "hello";str null;// of(T t):封装数据t生成Optional对象&#xff0c…

【笔试题心得】关于正则的一些整理

本文部分内容摘抄整理自 正则表达式 – 教程 | 菜鸟教程 在笔试的过程中,也常常会对正则表达式进行考察,这里对正则表达式的常见用法,做一个学习和总结。 正则表达式的模式可以包括以下内容: 字面值字符:例如字母、数…

数据结构:堆的实现

1.堆的概念 如果有一个关键码的集合 K { k1 &#xff0c;k2 &#xff0c;k3 &#xff0c;…&#xff0c;kn }&#xff0c;把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中&#xff0c;并且 k(i) < k(i*21) 和 k(i) < k(i*22)&#xff0c; i 0 &#xff…

MongoDB增删改查操作

数据库操作&#xff1a; 在MongoDB中&#xff0c;文档集合存在数据库中。 要选择使用的数据库&#xff0c;请在mongo shell程序中发出 use <db> 语句 // 查看有哪些数据库 show dbs;// 如果数据库不存在&#xff0c;则创建并切换到该数据库&#xff0c;存在则直接切换到…

C++之模板进阶

模板进阶 非类型模板参数模板的特化概念函数模板特化类模板特化全特化偏特化 模板分离编译什么是分离编译模板的分离编译解决方法 模板总结 非类型模板参数 模板参数分两种&#xff1a;类型形参与非类型形参。 类型形参&#xff1a;出现在模板参数列表中&#xff0c;跟在class…

drawio----输出pdf为图片大小无空白(图片插入论文)

自己在写论文插入图片时为了让论文图片放大不模糊&#xff0c;啥方法都试了&#xff0c;最后摸索出来这个。 自己手动画图的时候导出pdf总会出现自己的图片很小&#xff0c;pdf的白边很大如下如所示&#xff0c;插入论文的时候后虽然放大不会模糊&#xff0c;但是白边很大会显…

【数据结构OJ题】用队列实现栈

原题链接&#xff1a;https://leetcode.cn/problems/implement-stack-using-queues/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 可以用两个队列去实现一个栈&#xff0c;每次始终保持一个队列为空。 入栈相当于给非空队列进行入队操作。 出栈相…

异步电机IM-改进的电压模型磁链观测器学习

导读&#xff1a;本期文章主要介绍异步电机的改进型电压模型磁链观测器。传统纯积分形式的积分器在低速区域存在初始值问题和直流偏置问题&#xff0c;所以在实际应用中必须对电压模型进行改进。本期文章中的对电压模型改进是借鉴一篇IEEE中的方法。 如果需要文章中对应的仿真…

Apache Dubbo 云原生可观测性的探索与实践

作者&#xff1a;宋小生 - 平安壹钱包中间件资深工程师 Dubbo3 可观测能力速览 Apache Dubbo3 在云原生可观测性方面完成重磅升级&#xff0c;使用 Dubbo3 最新版本&#xff0c;你只需要引入 dubbo-spring-boot-observability-starter 依赖&#xff0c;微服务集群即原生具备以…

PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132357976 Paper: EigenFold: Generative Protein Structure Prediction with Diffusion Models EigenFold 是用于蛋白质结构预测的扩散生成模型…

【面试八股文】每日一题:谈谈你对线程的理解

每日一题-Java核心-谈谈你对线程的理解【面试八股文】 Java线程是Java程序中的执行单元。一个Java程序可以同时运行多个线程&#xff0c;每个线程可以独立执行不同的任务。线程的执行是并发的&#xff0c;即多个线程可以同时执行。 1. 线程的特点 Java中的线程有如下的特点 轻…

react-native-webview使用postMessage后H5不能监听问题(iOS和安卓的兼容问题)

/* 监听rn消息 */ const eventListener nativeEvent > {//解析数据actionType、extraconst {actionType, extra} nativeEvent.data && JSON.parse(nativeEvent.data) || {} } //安卓用document&#xff0c;ios用window window.addEventListener(message, eventLis…

Jenkins-发送邮件配置

在Jenkins构建执行完毕后&#xff0c;需要及时通知相关人员。因此在jenkins中是可以通过邮件通知的。 一、Jenkins自带的邮件通知功能 找到manage Jenkins->Configure System&#xff0c;进行邮件配置&#xff1a; 2. 配置Jenkins自带的邮箱信息 完成上面的配置后&#xf…

DiffusionDet: Diffusion Model for Object Detection

DiffusionDet: Diffusion Model for Object Detection 论文概述不同之处整体流程 论文题目&#xff1a;DiffusionDet: Diffusion Model for Object Detection 论文来源&#xff1a;arXiv preprint 2022 论文地址&#xff1a;https://arxiv.org/abs/2211.09788 论文代码&#xf…

kubesphere 使用流水线对接 sonar

官方文档&#xff1a;使用图形编辑面板创建流水线 创建凭证 创建 sonar 凭证 创建 gitlab 凭证 创建流水线 创建流水线&#xff0c;编辑流水线 自定义流水线 拉取代码 代理选 kubernetes&#xff0c;label 填maven 添加步骤 - git 填写 git 地址&#xff0c;选…