数据结构的图存储结构

目录

数据结构的图存储结构

图存储结构基本常识

弧头和弧尾

入度和出度

(V1,V2) 和 的区别,v2>

集合 VR 的含义

路径和回路

权和网的含义

图存储结构的分类

什么是连通图,(强)连通图详解

强连通图

什么是生成树,生成树(生成森林)详解

生成森林


数据结构的图存储结构

我们知道,数据之间的关系有 3 种,分别是 "一对一"、"一对多" 和 "多对多",前两种关系的数据可分别用线性表和树结构存储,本节学习存储具有"多对多"逻辑关系数据的结构——图存储结构。


 

图存储结构示意图


图 1 图存储结构示意图


图 1 所示为存储 V1、V2、V3、V4 的图结构,从图中可以清楚的看出数据之间具有的"多对多"关系。例如,V1 与 V4 和 V2 建立着联系,V4 与 V1 和 V3 建立着联系,以此类推。

与链表不同,图中存储的各个数据元素被称为顶点(而不是节点)。拿图 1 来说,该图中含有 4 个顶点,分别为顶点 V1、V2、V3 和 V4。

图存储结构中,习惯上用 Vi 表示图中的顶点,且所有顶点构成的集合通常用 V 表示,如图 1 中顶点的集合为 V={V1,V2,V3,V4}。


注意,图 1 中的图仅是图存储结构的其中一种,数据之间 "多对多" 的关系还可能用如图 2 所示的图结构表示:


 

有向图示意图


图 2 有向图示意图


可以看到,各个顶点之间的关系并不是"双向"的。比如,V4 只与 V1 存在联系(从 V4 可直接找到 V1),而与 V3 没有直接联系;同样,V3 只与 V4 存在联系(从 V3 可直接找到 V4),而与 V1 没有直接联系,以此类推。

因此,图存储结构可细分两种表现类型,分别为无向图(图 1)和有向图(图 2)。

图存储结构基本常识

弧头和弧尾

有向图中,无箭头一端的顶点通常被称为"初始点"或"弧尾",箭头直线的顶点被称为"终端点"或"弧头"。

入度和出度

对于有向图中的一个顶点 V 来说,箭头指向 V 的弧的数量为 V 的入度(InDegree,记为 ID(V));箭头远离 V 的弧的数量为 V 的出度(OutDegree,记为OD(V))。拿图 2 中的顶点 V1来说,该顶点的入度为 1,出度为 2(该顶点的度为 3)。

(V1,V2) 和 <V1,V2> 的区别

无向图中描述两顶点(V1 和 V2)之间的关系可以用 (V1,V2) 来表示,

而有向图中描述从 V1 到 V2 的"单向"关系用 <V1,V2> 来表示。

由于图存储结构中顶点之间的关系是用线来表示的,因此 (V1,V2) 还可以用来表示无向图中连接 V1 和 V2 的线,又称为边;同样,<V1,V2> 也可用来表示有向图中从 V1 到 V2 带方向的线,又称为弧。

集合 VR 的含义

并且,图中习惯用 VR 表示图中所有顶点之间关系的集合。例如,图 1 中无向图的集合 VR={(v1,v2),(v1,v4),(v1,v3),(v3,v4)},图 2 中有向图的集合 VR={<v1,v2>,<v1,v3>,<v3,v4>,<v4,v1>}。

路径和回路

无论是无向图还是有向图,从一个顶点到另一顶点途径的所有顶点组成的序列(包含这两个顶点),称为一条路径。如果路径中第一个顶点和最后一个顶点相同,则此路径称为"回路"(或"环")。

并且,若路径中各顶点都不重复,此路径又被称为"简单路径";同样,若回路中的顶点互不重复,此回路被称为"简单回路"(或简单环)。

拿图 1 来说,从 V1 存在一条路径还可以回到 V1,此路径为 {V1,V3,V4,V1},这是一个回路(环),而且还是一个简单回路(简单环)。

在有向图中,每条路径或回路都是有方向的。

权和网的含义

在某些实际场景中,图中的每条边(或弧)会赋予一个实数来表示一定的含义,这种与边(或弧)相匹配的实数被称为"权",而带权的图通常称为网。如图 3 所示,就是一个网结构:


 

带权的图存储结构


图 3 带权的图存储结构


子图:指的是由图中一部分顶点和边构成的图,称为原图的子图。

图存储结构的分类

根据不同的特征,图又可分为完全图,连通图、稀疏图和稠密图:

完全图:若图中各个顶点都与除自身外的其他顶点有关系,这样的无向图称为完全图(如图 4a))。同时,满足此条件的有向图则称为有向完全图(图 4b))。


 

完全图示意图


图 4 完全图示意图

具有 n 个顶点的完全图,图中边的数量为 n(n-1)/2;

对于具有 n 个顶点的有向完全图,图中弧的数量为 n(n-1)。

  • 稀疏图和稠密图:这两种图是相对存在的,即如果图中具有很少的边(或弧),此图就称为"稀疏图";反之,则称此图为"稠密图"。

    稀疏和稠密的判断条件是:e<nlogn,其中 e 表示图中边(或弧)的数量,n 表示图中顶点的数量。如果式子成立,则为稀疏图;反之为稠密图。

什么是连通图,(强)连通图详解


前面讲过,图中从一个顶点到达另一顶点,若存在至少一条路径,则称这两个顶点是连通着的。例如图 1 中,虽然 V1 和 V3 没有直接关联,但从 V1 到 V3 存在两条路径,分别是 V1-V2-V3 和 V1-V4-V3,因此称 V1 和 V3 之间是连通的。


 

顶点之间的连通状态示意图


图 1 顶点之间的连通状态示意图


无向图中,如果任意两个顶点之间都能够连通,则称此无向图为连通图。例如,图 2 中的无向图就是一个连通图,因为此图中任意两顶点之间都是连通的。


 

连通图示意图


图 2 连通图示意图


若无向图不是连通图,但图中存储某个子图符合连通图的性质,则称该子图为连通分量

前面讲过,由图中部分顶点和边构成的图为该图的一个子图,但这里的子图指的是图中"最大"的连通子图(也称"极大连通子图")。

如图 3 所示,虽然图 3a) 中的无向图不是连通图,但可以将其分解为 3 个"最大子图"(图 3b)),它们都满足连通图的性质,因此都是连通分量。


 


图 3 连通分量示意图

提示,图 3a) 中的无向图只能分解为 3 部分各自连通的"最大子图"。

需要注意的是,连通分量的提出是以"整个无向图不是连通图"为前提的,因为如果无向图是连通图,则其无法分解出多个最大连通子图,因为图中所有的顶点之间都是连通的。

强连通图

有向图中,若任意两个顶点 Vi 和 Vj,满足从 Vi 到 Vj 以及从 Vj 到 Vi 都连通,也就是都含有至少一条通路,则称此有向图为强连通图。如图 4 所示就是一个强连通图。


 

强连通图


图 4 强连通图


与此同时,若有向图本身不是强连通图,但其包含的最大连通子图具有强连通图的性质,则称该子图为强连通分量。


 

强连通分量


图 5 强连通分量


如图 5 所示,整个有向图虽不是强连通图,但其含有两个强连通分量。

可以这样说,连通图是在无向图的基础上对图中顶点之间的连通做了更高的要求,而强连通图是在有向图的基础上对图中顶点的连通做了更高的要求。

什么是生成树,生成树(生成森林)详解

对连通图进行遍历,过程中所经过的边和顶点的组合可看做是一棵普通树,通常称为生成树。


 

连通图及其对应的生成树


图 1 连通图及其对应的生成树


如图 1 所示,图 1a) 是一张连通图,图 1b) 是其对应的 2 种生成树。

连通图中,由于任意两顶点之间可能含有多条通路,遍历连通图的方式有多种,往往一张连通图可能有多种不同的生成树与之对应。

连通图中的生成树必须满足以下 2 个条件:

  1. 包含连通图中所有的顶点;
  2. 任意两顶点之间有且仅有一条通路;


因此,连通图的生成树具有这样的特征,即生成树中边的数量 = 顶点数 - 1

生成森林

生成树是对应连通图来说

而生成森林是对应非连通图来说的。

我们知道,非连通图可分解为多个连通分量,而每个连通分量又各自对应多个生成树(至少是 1 棵),因此与整个非连通图相对应的,是由多棵生成树组成的生成森林。


 

非连通图和连通分量


图 2 非连通图和连通分量


如图 2 所示,这是一张非连通图,可分解为 3 个连通分量,其中各个连通分量对应的生成树如图 3 所示:


 

生成森林


图 3 生成森林

注意,图 3 中列出的仅是各个连通分量的其中一种生成树。

因此,多个连通分量对应的多棵生成树就构成了整个非连通图的生成森林。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43240.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springboot集成ES

1.引入pom依赖2.application 配置3.JavaBean配置以及ES相关注解 3.1 Student实体类3.2 Teacher实体类3.3 Headmaster 实体类4. 启动类配置5.elasticsearchRestTemplate 新增 5.1 createIndex && putMapping 创建索引及映射 5.1.1 Controller层5.1.2 service层5.1.3 ser…

leetcode做题笔记85最大矩形

给定一个仅包含 0 和 1 、大小为 rows x cols 的二维二进制矩阵&#xff0c;找出只包含 1 的最大矩形&#xff0c;并返回其面积。 示例 1&#xff1a; 思路一&#xff1a;单调栈 int maximalRectangle(char** matrix, int matrixSize, int* matrixColSize){int dp[matrixSize…

使用MAT分析OOM问题

OOM和内存泄漏在我们的工作中&#xff0c;算是相对比较容易出现的问题&#xff0c;一旦出现了这个问题&#xff0c;我们就需要对堆进行分析。 一般情况下&#xff0c;我们生产应用都会设置这样的JVM参数&#xff0c;以便在出现OOM时&#xff0c;可以dump出堆内存文件&#xff…

基于libevent的tcp服务器

libevent使用教程_evutil_make_socket_nonblocking_易方达蓝筹的博客-CSDN博客 一、准备 centos7下安装libevent库 yum install libevent yum install -y libevent-devel 二、代码 server.cpp /** You need libevent2 to compile this piece of code Please see: http://li…

专访 BlockPI:共建账户抽象未来的新一代 RPC 基础设施

在传统 RPC 服务板块上&#xff0c;开发者一直饱受故障风险、运行环境混乱等难题的折磨。实现 RPC 服务的去中心化&#xff0c;且保持成本优势和可扩展性&#xff0c;始终是区块链基础设施建设的重要命题之一。从 2018 年观察中心化 RPC 供应商服务现状开始&#xff0c;BlockPI…

财务数据分析之现金流量表模板分享

现金流量表是我们常说的财务数据分析三表之一。它可以呈现一个企业的现金流情况&#xff0c;揭示企业经营管理健康状态&#xff0c;但在实际使用中却有总给人一种用不上、用不好的矛盾感。怎么才能把现金流量表做好&#xff1f;不如借鉴下大神的现金流量表模板。 下面介绍的是…

【Java 动态数据统计图】动态数据统计思路案例(动态,排序,数组)四(116)

需求&#xff1a;&#xff1a;前端根据后端的返回数据&#xff1a;画统计图&#xff1b; 1.动态获取地域数据以及数据中的平均值&#xff0c;按照平均值降序排序&#xff1b; 说明&#xff1a; X轴是动态的&#xff0c;有对应区域数据则展示&#xff1b; X轴 区域数据降序排序…

LabVIEW调用DLL传递结构体参数

LabVIEW 中调用动态库接口时&#xff0c;如果是值传递的结构体&#xff0c;可以根据字段拆解为多个参数&#xff1b;如果参数为结构体指针&#xff0c;可用簇&#xff08;Cluster&#xff09;来匹配&#xff0c;其内存连续相当于单字节对齐。 1.值传递 接口定义&#xff1a; …

【FAQ】调用视频汇聚平台EasyCVR的iframe地址,视频无法播放的原因排查

有用户反馈&#xff0c;在调用iframe地址后嵌入用户自己的前端页面&#xff0c;视频无法播放并且要求登录。 安防监控视频汇聚平台EasyCVR基于云边端一体化架构&#xff0c;具有强大的数据接入、处理及分发能力&#xff0c;可提供视频监控直播、云端录像、视频云存储、视频集中…

视频集中存储EasyCVR视频汇聚平台定制项目增加AI智能算法

安防视频集中存储EasyCVR视频汇聚平台&#xff0c;可支持海量视频的轻量化接入与汇聚管理。平台能提供视频存储磁盘阵列、视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、平台级联、H.265自动转码等功能。为了便…

【Unity每日一记】Physics.Raycast 相关_Unity中的“X光射线”

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…

05_bitmaphyperloglogGEO

Bitmap&hyperloglog&GEO 面试问 记录对集合中的数据进行统计在移动应用中&#xff0c;需要统计每天的新增用户数和第2天的留存用户数&#xff1b;在电商网站的商品评论中&#xff0c;需要统计评论列表中的最新评论&#xff1a;在签到打卡中&#xff0c;需要统计一个月内…

Python “贪吃蛇”游戏,在不断改进中学习pygame编程

目录 前言 改进过程一 增加提示信息 原版帮助摘要 pygame.draw pygame.font class Rect class Surface 改进过程二 增加显示得分 改进过程三 增加背景景乐 增加提示音效 音乐切换 静音切换 mixer.music.play 注意事项 原版帮助摘要 pygame.mixer pygame.mix…

HTML详解连载(7)

HTML详解连载&#xff08;7&#xff09; 专栏链接 [link](http://t.csdn.cn/xF0H3)下面进行专栏介绍 开始喽结构伪类选择器作用 :nth-child&#xff08;公式&#xff09;作用举例 伪元素选择器作用注意&#xff1a; PxCoook作用盒子模型-重要组成部分 盒子模型-边框线属性名属性…

excel中定位条件,excel中有哪些数据类型、excel常见错误值、查找与替换

一、如何定位条件 操作步骤&#xff1a;开始 - 查找和选择 - 定位条件&#xff08;ctrl G 或 F5&#xff09; 注&#xff1a;如果F5不可用&#xff0c;可能是这个快捷键被占用了 案例&#xff1a;使用定位条件选择取余中空单元格&#xff0c;填入100&#xff0c;按组合键ct…

【LeetCode75】第三十三题 二叉树的最大深度

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 从这一题开始&#xff0c;LeetCode75进入到了二叉树章节。 这边建议不熟悉二叉树的小伙伴可以先去做做力扣的前序遍历&#xff0c;中序遍…

使用git rebase 之后的如何恢复到原始状态

我们常常喜欢使用git rebase去切换分支提交代码,操作流程就是: 先切换分支:比如当前是master 我们修改了一堆代码产生一个commit id :5555555567777 那么我们常常比较懒就直接切换了:git checkout dev 然后呢?使用命令git rebase 5555555567777,想把这笔修改提交到d…

iPhone上的个人热点丢失了怎么办?如何修复iPhone上不见的个人热点?

个人热点功能可将我们的iPhone手机转变为 Wi-Fi 热点&#xff0c;有了Wi-Fi 热点后就可以与附近的其他设备共享其互联网连接。 一般情况下&#xff0c;个人热点打开就可以使用&#xff0c;但也有部分用户在升级系统或越狱后发现 iPhone 的个人热点消失了。 iPhone上的个人热点…

antd5源码调试环境搭建(window系统)

将antd源码克隆至本地 $ git clone gitgithub.com:ant-design/ant-design.git $ cd ant-design $ npm install $ npm start前提安装python3、安装node版本18版本 不然后续安装依赖会报python3相关的错误。 项目需要使用git 初始化 不然会报husky相关的错误 git init重新安…

【论文解读】Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking

因为Hybrid-SORT的baseline是基于OCSORT进行改进的&#xff0c;在这之前建议先了解byteTrack和【】的相关知识 1.介绍 1.1 基本框架 多目标跟踪(MOT)将问题分为两个子任务。第一个任务是检测每个帧中的对象。第二个任务是将它们在不同的框架中联系起来。关联任务主要通过显式…