Immutable的集合体系,还有中很重要的集合没有介绍,就是ImmutableMap,通过UML图,可以看出ImmutableMap的结构体系。
首先来看一下ImmutableBiMap,因为普通ImmutableMap的实现依赖于它。ImmutableBiMap在ImmutableMap的基础上,加入inverse()等方法,可以使键值反转。ImmutableBiMap的构造,也是根据元素个数的不同,使用不同的实现(0-->EmptyImmutablBiMap,1-->SingletonImmutablBiMap,n(n>=2)-->RegularImmubtalMap),代码如下所示:
public abstract class ImmutableBiMap<K, V> extends ImmutableMap<K, V> implements BiMap<K, V> {public static <K, V> ImmutableBiMap<K, V> of() {//Empty元素内部,不维护存储结构,inverse()方法直接返回thisreturn (ImmutableBiMap<K, V>) EmptyImmutableBiMap.INSTANCE;}public static <K, V> ImmutableBiMap<K, V> of(K k1, V v1) {//单个元素构造时,返回此类,内部维护两个元素K,V,inverse()时,返回V,K的SingletonImmutableBiMapreturn new SingletonImmutableBiMap<K, V>(k1, v1);}public static <K, V> ImmutableBiMap<K, V> of(K k1, V v1, K k2, V v2) {//多个元素构造是,返回此类,内部维护两个Entry[]集合,一个以key作为hashbucket的位置,
//另一个以value作为hashbucket的位置,用于inverse()的时候,key-value的反转return new RegularImmutableBiMap<K, V>(entryOf(k1, v1), entryOf(k2, v2));} }
copyOf()方法,在ImmutableCollections中实现的原则就是,如果copyOf()的还是一份ImmutableCollections集合,那么只是进行引用的赋值,因为集合本身不可变。
看过ImmutableBiMap之后,在回头看ImmutableMap就简单了很多,只是在ImmutableBiMap基础上去除了inverse()方法,并在内部为户单一数组(hashbucket)
不需要维护反转的数组。在无元素和单一元素构造的时候,直接调用ImmutableBiMap.of()和ImmutableBiMap.of(K,V)方法,代码如下所示:
public abstract class ImmutableMap<K, V> implements Map<K, V>, Serializable {/*** Returns the empty map. This map behaves and performs comparably to* {@link Collections#emptyMap}, and is preferable mainly for consistency* and maintainability of your code.*/public static <K, V> ImmutableMap<K, V> of() {return ImmutableBiMap.of();}/*** Returns an immutable map containing a single entry. This map behaves and* performs comparably to {@link Collections#singletonMap} but will not accept* a null key or value. It is preferable mainly for consistency and* maintainability of your code.*/public static <K, V> ImmutableMap<K, V> of(K k1, V v1) {return ImmutableBiMap.of(k1, v1);} }
多个元素构造的时候,返回RegularImmubtalMap,与RegularImmutableBiMap内部实现大同小异,去除对反转(值-键)的数组维护,去除inverse()等方法。
最后简单的阐述一下ImmutableSortedMap的实现,ImmutableMap单一元素和空元素的实现,就不详细说了,有兴趣的读者可以自己看看。多元素实现的时候,
ImmutableSortedMap的具体实现类是RegularImmutableSortedMap,有意思的是,它的内部维护key和value的数据结构是两个List,那么可想而知,排序早在构造的时候就已经完成了,而事实确实是这样,具体代码如下所示:
@SuppressWarnings("unchecked")public static <K extends Comparable<? super K>, V> ImmutableSortedMap<K, V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4) {//将排序器和entires传入fromEntries方法return fromEntries(Ordering.natural(), false, 4, entryOf(k1, v1), entryOf(k2, v2),entryOf(k3, v3), entryOf(k4, v4));}
static <K, V> ImmutableSortedMap<K, V> fromEntries(Comparator<? super K> comparator, boolean sameComparator, int size, Entry<K, V>... entries) {for (int i = 0; i < size; i++) {Entry<K, V> entry = entries[i];entries[i] = entryOf(entry.getKey(), entry.getValue());}if (!sameComparator) {sortEntries(comparator, size, entries);//遍历entries排序 validateEntries(size, entries, comparator);}return fromSortedEntries(comparator, size, entries);}
static <K, V> ImmutableSortedMap<K, V> fromSortedEntries( Comparator<? super K> comparator,int size,Entry<K, V>[] entries) {if (size == 0) {return emptyMap(comparator);}//遍历排序之后的entries,分开key和value,分别组成各自的ListImmutableList.Builder<K> keyBuilder = ImmutableList.builder();ImmutableList.Builder<V> valueBuilder = ImmutableList.builder();for (int i = 0; i < size; i++) {Entry<K, V> entry = entries[i];keyBuilder.add(entry.getKey());valueBuilder.add(entry.getValue());}return new RegularImmutableSortedMap<K, V>(new RegularImmutableSortedSet<K>(keyBuilder.build(), comparator),valueBuilder.build()); }
ImmutableMap中的Entry,也是被Guava重新实现,增加了bucket的计算逻辑,如下图UML:
AbstractMapEntry在原有Map.entry基础上,将写操作,置为直接抛异常,ImmutableEntry实现getKey()和getValue(),ImmutableMapEntry再加入bucket的计算和维护方法(链表),最终反映到NonTerminalMapEntry和TerminalEntry,对于这两个类,TerminalEntry为bucket链表的尾结点,所以实现如下:
static final class TerminalEntry<K, V> extends ImmutableMapEntry<K, V> {TerminalEntry(ImmutableMapEntry<K, V> contents) {super(contents);}TerminalEntry(K key, V value) {super(key, value);}@Override@NullableImmutableMapEntry<K, V> getNextInKeyBucket() {//尾节点,所以没有nuextreturn null;}@Override@NullableImmutableMapEntry<K, V> getNextInValueBucket() {//尾节点,所以没有nuextreturn null;}}
而NonTerminalMapEntry的构造则需要传入下一个Entry
private static final class NonTerminalMapEntry<K, V> extends ImmutableMapEntry<K, V> {private final ImmutableMapEntry<K, V> nextInKeyBucket;NonTerminalMapEntry(K key, V value, ImmutableMapEntry<K, V> nextInKeyBucket) {super(key, value);this.nextInKeyBucket = nextInKeyBucket;}NonTerminalMapEntry(ImmutableMapEntry<K, V> contents, ImmutableMapEntry<K, V> nextInKeyBucket) {super(contents);this.nextInKeyBucket = nextInKeyBucket;}@OverrideImmutableMapEntry<K, V> getNextInKeyBucket() {//同一个bucket中的下一个Entryreturn nextInKeyBucket;}@Override@NullableImmutableMapEntry<K, V> getNextInValueBucket() {//BiMap才会维护Value的Bucketreturn null;}}
那么在构造的时候,如果产生hash冲突,就是用nonTerminalMapEntry,代码如下所示:
RegularImmutableMap(Entry<?, ?>[] theEntries) {int size = theEntries.length;entries = createEntryArray(size);int tableSize = Hashing.closedTableSize(size, MAX_LOAD_FACTOR);table = createEntryArray(tableSize);mask = tableSize - 1;for (int entryIndex = 0; entryIndex < size; entryIndex++) {@SuppressWarnings("unchecked") // all our callers carefully put in only Entry<K, V>sEntry<K, V> entry = (Entry<K, V>) theEntries[entryIndex];K key = entry.getKey();V value = entry.getValue();checkEntryNotNull(key, value);int tableIndex = Hashing.smear(key.hashCode()) & mask;@Nullable ImmutableMapEntry<K, V> existing = table[tableIndex];// prepend, not append, so the entries can be immutable//在构造是,如果产生hash冲突,那么直接的append到terminal的前面ImmutableMapEntry<K, V> newEntry = (existing == null)? new TerminalEntry<K, V>(key, value): new NonTerminalMapEntry<K, V>(key, value, existing);table[tableIndex] = newEntry;entries[entryIndex] = newEntry;checkNoConflictInBucket(key, newEntry, existing);}}