k8s简介、虚拟机快速搭建k8s集群、集群管理方式及K8S工作原理和组件介绍

文章目录

    • 1、k8s简介
      • 1.1、部署方式的变迁
      • 1.2、定义
      • 1.3、Kubernetes提供的功能
    • 2、虚拟机快速搭建k8s集群
      • 2.1、虚拟机配置(centos7 2G内存2个处理器)
      • 2.2、基础环境准备
      • 2.3、docker安装(易踩坑)
      • 2.4、安装k8s组件
      • 2.5、master节点部署
      • 2.6、部署网络插件
      • 2.7、2台node节点的虚机加入主节点
      • 2.8、验证集群是否部署成功
      • 2.9、设置ipvs模式
    • 3、集群管理方式
      • 3.1、分类方式
      • 3.2、master-node 架构
    • 4、K8S工作原理和组件介绍
        • 4.1、结构图
        • 4.2、基本组件介绍
        • 4.3、部署一个应用在K8S底层的全流程
        • 4.4、原理分解
          • 4.4.1、主节点(master)
          • 4.4.2、工作节点(node)
        • 4.5、组件交互原理

1、k8s简介

1.1、部署方式的变迁

在这里插入图片描述

  • 传统部署时代:
    • 在物理服务器上运行应用程序
    • 无法为应用程序定义资源边界
    • 导致资源分配问题

例如,如果在物理服务器上运行多个应用程序,则可能会出现一个应用程序占用大部分资源的情况, 结果可能导致其他应用程序的性能下降。 一种解决方案是在不同的物理服务器上运行每个应用程序,但是由于资源利用不足而无法扩展, 并且维护许多物理服务器的成本很高。

  • 虚拟化部署时代:
    • 作为解决方案,引入了虚拟化
    • 虚拟化技术允许你在单个物理服务器的 CPU 上运行多个虚拟机(VM)
    • 虚拟化允许应用程序在 VM 之间隔离,并提供一定程度的安全
    • 一个应用程序的信息 不能被另一应用程序随意访问。
    • 虚拟化技术能够更好地利用物理服务器上的资源
    • 因为可轻松地添加或更新应用程序 ,所以可以实现更好的可伸缩性,降低硬件成本等等。
    • 每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。

缺点:虚拟层冗余导致的资源浪费与性能下降

  • 容器部署时代:
    • 容器类似于 VM,但可以在应用程序之间共享操作系统(OS)。
    • 容器被认为是轻量级的。
    • 容器与 VM 类似,具有自己的文件系统、CPU、内存、进程空间等。
    • 由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
    • 参照【Docker隔离原理- namespace 6项隔离(资源隔离)与 cgroups 8项资源限制(资源限制)】

裸金属:真正的物理服务器

容器优势:

  • 敏捷性 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
  • 及时性 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性),支持可靠且频繁的 容器镜像构建和部署。
  • **解耦性:**关注开发与运维的分离:在构建/发布时创建应用程序容器镜像,而不是在部署时。 从而将应用程序与基础架构分离。
  • 可观测性 可观察性不仅可以显示操作系统级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
  • 跨平台 跨开发、测试和生产的环境一致性:在便携式计算机上与在云中相同地运行。
  • 可移植 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、 Google Kubernetes Engine 和其他任何地方运行。
  • 简易性 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
  • 大分布式 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分, 并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
  • 隔离性 资源隔离:可预测的应用程序性能。
  • 高效性 资源利用:高效率和高密度

1.2、定义

Kubernetes 是一个可移植的、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。 Kubernetes 拥有一个庞大且快速增长的生态系统。Kubernetes 的服务、支持和工具广泛可用。

1.3、Kubernetes提供的功能

  • 服务发现和负载均衡
    Kubernetes 可以使用 DNS 名称或自己的 IP 地址公开容器,如果进入容器的流量很大, Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。

  • 存储编排
    Kubernetes 允许你自动挂载你选择的存储系统,例如本地存储、公共云提供商等。

  • 自动部署和回滚
    你可以使用 Kubernetes 描述已部署容器的所需状态,它可以以受控的速率将实际状态 更改为期望状态。例如,你可以自动化 Kubernetes 来为你的部署创建新容器, 删除现有容器并将它们的所有资源用于新容器。

  • 自动完成装箱计算
    Kubernetes 允许你指定每个容器所需 CPU 和内存(RAM)。 当容器指定了资源请求时,Kubernetes 可以做出更好的决策来管理容器的资源。

  • 自我修复
    Kubernetes 重新启动失败的容器、替换容器、杀死不响应用户定义的 运行状况检查的容器,并且在准备好服务之前不将其通告给客户端。

  • 密钥与配置管理
    Kubernetes 允许你存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。 你可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥

为了生产环境的容器化大规模应用编排,必须有一个自动化的框架或系统

2、虚拟机快速搭建k8s集群

2.1、虚拟机配置(centos7 2G内存2个处理器)

建议最小硬件配置:2核CPU、2G内存、20G硬盘 服务器最好可以访问

名称IP
master192.168.40.128
node01192.168.40.129
node02192.168.40.130

2.2、基础环境准备

为三台虚拟机设置主机名
hostnamectl set-hostname k8s-master / k8s-node01 / k8s-node02 ==> 三台主机分别设置主机名
hostnamectl status
echo “127.0.0.1 $(hostname)” >> /etc/hosts

关闭 selinux
sed -i ‘s/enforcing/disabled/’ /etc/selinux/config
setenforce 0

关闭 swap
swapoff -a
sed -ri ‘s/.swap./#&/’ /etc/fstab

将桥接的 IPv4 流量传递到 iptables 的链
修改 /etc/sysctl.conf
如果有配置,则修改
sed -i “s#^net.ipv4.ip_forward.#net.ipv4.ip_forward=1#g" /etc/sysctl.conf
sed -i "s#^net.bridge.bridge-nf-call-ip6tables.
#net.bridge.bridge-nf-call-ip6tables=1#g” /etc/sysctl.conf
sed -i “s#^net.bridge.bridge-nf-call-iptables.#net.bridge.bridge-nf-call-iptables=1#g" /etc/sysctl.conf
sed -i "s#^net.ipv6.conf.all.disable_ipv6.
#net.ipv6.conf.all.disable_ipv6=1#g” /etc/sysctl.conf
sed -i “s#^net.ipv6.conf.default.disable_ipv6.#net.ipv6.conf.default.disable_ipv6=1#g" /etc/sysctl.conf
sed -i "s#^net.ipv6.conf.lo.disable_ipv6.
#net.ipv6.conf.lo.disable_ipv6=1#g” /etc/sysctl.conf
sed -i “s#^net.ipv6.conf.all.forwarding.*#net.ipv6.conf.all.forwarding=1#g” /etc/sysctl.conf
可能没有,追加
echo “net.ipv4.ip_forward = 1” >> /etc/sysctl.conf
echo “net.bridge.bridge-nf-call-ip6tables = 1” >> /etc/sysctl.conf
echo “net.bridge.bridge-nf-call-iptables = 1” >> /etc/sysctl.conf
echo “net.ipv6.conf.all.disable_ipv6 = 1” >> /etc/sysctl.conf
echo “net.ipv6.conf.default.disable_ipv6 = 1” >> /etc/sysctl.conf
echo “net.ipv6.conf.lo.disable_ipv6 = 1” >> /etc/sysctl.conf
echo “net.ipv6.conf.all.forwarding = 1” >> /etc/sysctl.conf
执行命令以应用
sysctl -p

2.3、docker安装(易踩坑)

# 1.卸载旧的版本
sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine
# 2.安装基本的安装包
sudo yum install -y yum-utils
# 3.设置镜像仓库
sudo yum-config-manager \--add-repo \https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo # 阿里云镜像
# 更像软件包索引  
yum makecache fast  
# 4.安装docker引擎
yum install docker-ce docker-ce-cli containerd.io  # docker-ce 社区版 ee 企业版
# 5.启动Docker
systemctl enable docker && systemctl start docker  # 代表启动成功
# 6.测试docker可以docker的常用命令
docker version
docker images
docker ps
# 7.配置镜像加速
#配置docker加速
cat > /etc/docker/daemon.json << EOF
{"registry-mirrors": ["https://b9pmyelo.mirror.aliyuncs.com"],"exec-opts": ["native.cgroupdriver=systemd"]
}
EOF
# 重启docker
systemctl restart docker
# 查看docker信息
docker info

2.4、安装k8s组件

配置软件源

cat > /etc/yum.repos.d/kubernetes.repo << EOF
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=0
repo_gpgcheck=0
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF

安装指定版本并启动

yum install -y kubelet-1.23.0 kubeadm-1.23.0 kubectl-1.23.0
systemctl enable kubelet && systemctl start kubelet

2.5、master节点部署

192.168.40.128换成自己主节点的IP地址

kubeadm init \--apiserver-advertise-address=192.168.40.128 \--image-repository registry.aliyuncs.com/google_containers \--kubernetes-version v1.23.0 \--service-cidr=10.96.0.0/12 \--pod-network-cidr=10.244.0.0/16 \--ignore-preflight-errors=all######按照提示继续######
## init完成后第一步:复制相关文件夹
## To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
## 导出环境变量
## Alternatively, if you are the root user, you can run:
export KUBECONFIG=/etc/kubernetes/admin.conf

2.6、部署网络插件

kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml

2.7、2台node节点的虚机加入主节点

##在两台node节点虚拟机上执行master节点kubeadm init 后生成的join代码
kubeadm join 192.168.40.128:6443 --token ixvxxd.oamu833eimbkvwt6 --discovery-token-ca-cert-hash sha256:fb6c95e8999315d12267287162973c08e319c731ac5f706d22199b2dfe08b8c2 
**建议先重启node上的kubeadm**
kubeadm reset## 过期怎么办
kubeadm token create --print-join-command
kubeadm token create --ttl 0 --print-join-command
kubeadm join --token y1eyw5.ylg568kvohfdsfco --discovery-token-ca-cert-hash sha256: 6c35e4f73f72afd89bf1c8c303ee55677d2cdb1342d67bb23c852aba2efc7c73

2.8、验证集群是否部署成功

#获取所有节点
kubectl get nodes#给节点打标签
## k8s中万物皆对象。node:机器  Pod:应用容器
###加标签
kubectl label node k8s-02 node-role.kubernetes.io/worker=''
###去标签
kubectl label node k8s-02 node-role.kubernetes.io/worker-
## k8s集群,机器重启了会自动再加入集群,master重启了会自动再加入集群控制中心

2.9、设置ipvs模式

k8s整个集群为了访问通;默认是用iptables,性能下(kube-proxy在集群之间同步iptables的内容)#1、查看默认kube-proxy 使用的模式
kubectl logs -n kube-system kube-proxy-28xv4
#2、需要修改 kube-proxy 的配置文件,修改mode 为ipvs。默认iptables,但是集群大了以后就很慢
kubectl edit cm kube-proxy -n kube-system
修改如下ipvs:excludeCIDRs: nullminSyncPeriod: 0sscheduler: ""strictARP: falsesyncPeriod: 30skind: KubeProxyConfigurationmetricsBindAddress: 127.0.0.1:10249mode: "ipvs"###修改了kube-proxy的配置,为了让重新生效,需要杀掉以前的Kube-proxykubectl get pod -A|grep kube-proxykubectl delete pod kube-proxy-pqgnt -n kube-system
### 修改完成后可以重启kube-proxy以生效

文章目录

    • 1、k8s简介
      • 1.1、部署方式的变迁
      • 1.2、定义
      • 1.3、Kubernetes提供的功能
    • 2、虚拟机快速搭建k8s集群
      • 2.1、虚拟机配置(centos7 2G内存2个处理器)
      • 2.2、基础环境准备
      • 2.3、docker安装(易踩坑)
      • 2.4、安装k8s组件
      • 2.5、master节点部署
      • 2.6、部署网络插件
      • 2.7、2台node节点的虚机加入主节点
      • 2.8、验证集群是否部署成功
      • 2.9、设置ipvs模式
    • 3、集群管理方式
      • 3.1、分类方式
      • 3.2、master-node 架构
    • 4、K8S工作原理和组件介绍
        • 4.1、结构图
        • 4.2、基本组件介绍
        • 4.3、部署一个应用在K8S底层的全流程
        • 4.4、原理分解
          • 4.4.1、主节点(master)
          • 4.4.2、工作节点(node)
        • 4.5、组件交互原理

3、集群管理方式

3.1、分类方式

主从:
(1)主从同步/复制 (MYSQL 主 – MYSQL 从 => MYSQL就是典型的主从同步方式)
(2)主管理从 (K8S属于主管理从的方式)
分片 :也叫数据集群
(1)每个机器上都一样
(2)每个机器都之存储一部分东西,所有机器上的数据加起来是完整的

3.2、master-node 架构

在这里插入图片描述

master 和 worker怎么交互
master决定worker里面都有什么
worker只是和master (API) 通信; 每一个节点自己干自己的活
程序员使用UI或者CLI操作k8s集群的master,就可以知道整个集群的状况

4、K8S工作原理和组件介绍

4.1、结构图

在这里插入图片描述

4.2、基本组件介绍

master节点(Control Plane【控制面板】):master节点控制整个集群master节点上有一些核心组件:- Controller  Manager:控制管理器
- etcd:键值数据库(redis)【记账本,记事本】
- scheduler:调度器
- api server:api网关(所有的控制都需要通过api-server)node节点(worker工作节点):- kubelet(监工):每一个node节点上必须安装的组件。
- kube-proxy:代理, 代理网络

4.3、部署一个应用在K8S底层的全流程

开发人员:调用CLI或者使用K8S页面管理工具告诉master,我们现在要部署一个tomcat应用- 程序员的所有调用都先去master节点的网关api-server,这是matser的唯一入口(类似于mvc模式中的c层)
- 收到的请求先交给master的api-server,由api-server交给controller-mannager进行控制
- controller-mannager 进行 应用部署
- controller-mannager 会生成一次部署信息。 tomcat --image:tomcat6 --port 8080, 但是真正不部署应用
- 部署信息被记录在etcd中
- scheduler调度器从etcd数据库中,拿到要部署的应用,开始调度,然后看哪个节点比较合适
- scheduler把算出来的调度信息再放到etcd中
- 每一个node节点的监控kubelet,随时和master保持联系的(给api-server发送请求不断获取最新数据),所有节点的kubelet就会从master
- 假设node2的kubelet最终收到了命令,要部署。
- kubelet就自己run一个应用在当前机器上,随时给master汇报当前应用的状态信息,分配ip
- node和master是通过master的api-server联系的
- 每一个机器上的kube-proxy能知道集群的所有网络,只要node访问别人或者别人访问node,node上的kube-proxy网络代理自动计算进行流量转发

下图和上图一样的,再理解一下
在这里插入图片描述

4.4、原理分解

4.4.1、主节点(master)

在这里插入图片描述
快速介绍

  • master也要装kubelet和kubeproxy
  • 前端访问(UI\CLI):
  • kube-apiserver:
  • scheduler:
  • controller manager:
  • etcd
  • kubelet+kubeproxy每一个节点的必备+docker(容器运行时环境)
4.4.2、工作节点(node)

在这里插入图片描述
快速介绍:

  • Pod:
    • docker run 启动的是一个container(容器),容器是docker的基本单位,一个应用是一个容器
    • kubelet run 启动的一个应用称为一个Pod;Pod是k8s的基本单位。
      • Pod是容器的一个再封装
      • 应用 => pod => docker的容器
      • 一个容器往往代表不了一个基本应用。博客(php+mysql合起来完成)
      • 准备一个Pod 可以包含多个 container;一个Pod代表一个基本的应用。
      • IPod(看电影、听音乐、玩游戏)【一个基本产品,原子】
      • Pod(music container、movie container)【一个基本产品,原子的】
  • Kubelet:监工,负责交互master的api-server以及当前机器的应用启停等,在master机器就是master的小助手。每一台机器真正干活的都是这个 Kubelet
  • Kube-proxy:

4.5、组件交互原理

在这里插入图片描述
部署流程再说明

想让k8s部署一个tomcat?0、开机默认所有节点的kubelet、master节点的scheduler(调度器)、controller-manager(控制管理器)一直监听master的api-server发来的事件变化(for ::)1、程序员使用命令行工具: kubectl ; kubectl create deploy tomcat --image=tomcat8(告诉master让集群使用tomcat8镜像,部署一个tomcat应用)2、kubectl命令行内容发给api-server,api-server保存此次创建信息到etcd3、etcd给api-server上报事件,说刚才有人给我里面保存一个信息。(部署Tomcat[deploy]4、controller-manager监听到api-server的事件,是 (部署Tomcat[deploy]5、controller-manager 处理这个 (部署Tomcat[deploy])的事件。controller-manager会生成Pod的部署信息【pod信息】6、controller-manager 把Pod的信息交给api-server,再保存到etcd7、etcd上报事件【pod信息】给api-server。8、scheduler专门监听 【pod信息】 ,拿到 【pod信息】的内容,计算,看哪个节点合适部署这个Pod【pod调度过后的信息(node: node-02)】,9、scheduler把 【pod调度过后的信息(node: node-02)】交给api-server保存给etcd10、etcd上报事件【pod调度过后的信息(node: node-02)】,给api-server11、其他节点的kubelet专门监听 【pod调度过后的信息(node: node-02)】 事件,集群所有节点kubelet从api-server就拿到了 【pod调度过后的信息(node: node-02)】 事件12、每个节点的kubelet判断是否属于自己的事情;node-02的kubelet发现是他的事情13、node-02的kubelet启动这个pod。汇报给master当前启动好的所有信息

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/42600.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

提高批量爬虫工作效率

大家好&#xff01;作为一名专业的爬虫程序员&#xff0c;我今天要和大家分享一些关于提高批量爬虫工作效率的实用技巧。无论你是要批量采集图片、文本还是视频数据&#xff0c;这些经验都能帮助你在大规模数据采集中事半功倍。废话不多说&#xff0c;让我们开始吧&#xff01;…

SUMO 创建带有停车位的充电站 在停车位上充电

前言 SUMO提供的Charging Station是没有停车位的&#xff0c;车辆只有在通过充电站区域或者停在充电站区域内时才能被充电&#xff0c;这时充电的车辆就会占用道路。然而&#xff0c;真实世界中的情况通常是充电站设在路边&#xff0c;且提供一定量的车位用于停车&#xff0c;…

半导体自动化专用静电消除器主要由哪些部分组成

半导体自动化专用静电消除器是一种用于消除半导体生产过程中的静电问题的设备。由于半导体制造过程中对静电的敏感性&#xff0c;静电可能会对半导体器件的质量和可靠性产生很大的影响&#xff0c;甚至造成元件损坏。因此&#xff0c;半导体生产中采用专用的静电消除器是非常重…

Linux Day09

目录 一、进程替换 二、Linux信号的使用 2.1 kill() 发送信号 2.2 signal() 改变进程对信号的响应方式 2.3 处理僵死进程 2.3.1 在信号处理函数中调用wait 2.3.2 Linux特有的 2.3.3 结果 一、进程替换 linux上创造一个新进程&#xff0c;没有create创建方法&#xf…

数据分析15——office中的Excel基础技术汇总

0、前言&#xff1a; 这部分总结就是总结每个基础技术的定义&#xff0c;在了解基础技术名称和定义后&#xff0c;方便对相关技术进行检索学习。笔记不会详细到所有操作都说明&#xff0c;但会把基础操作的名称及作用说明&#xff0c;可自行检索。本文对于大部分读者有以下作用…

优化视频流:利用美颜SDK提升直播质量的方法

随着互联网的迅猛发展&#xff0c;视频直播已成为人们分享、交流和娱乐的重要方式。然而&#xff0c;在实际的直播过程中&#xff0c;视频画质可能受到诸多因素的影响&#xff0c;例如摄像头品质、网络状况等。为了提升观众的体验和吸引更多的观众&#xff0c;美颜技术逐渐成为…

Git分享-规范/建议/技巧

1. Git多人协作开发流程图 1.1 processOn默认的模板 1.2 改造之后 https://www.processon.com/view/link/64ccaf56a433c931b2f9428a 访问密码&#xff1a;512I ① 总流程图 ② feat分支&#xff08;功能/需求 分支&#xff09;流程 ③ bugfix分支&#xff08;紧急补丁分支&…

Qt平滑弹出页面

目标功能&#xff1a; (1)按下btn&#xff0c;弹出绿色页面。 (2)按下btn2,绿色页面隐藏。 (3)按下左边余下的区域&#xff0c;绿色页面也隐藏。 (4)平滑地显示和隐藏 效果&#xff1a; form.h #ifndef FORM_H #define FORM_H#include <QWidget>namespace Ui { class…

上半年营收19亿,金融壹账通第二增长曲线“加速上坡”

8月16日&#xff0c;壹账通金融科技有限公司&#xff08;下称“金融壹账通”&#xff09;发布了截至2023年6月30日中期业绩报告。 根据财报&#xff0c;2023年上半年&#xff0c;金融壹账通实现营收18.99亿元&#xff0c;毛利润为6.96亿元&#xff1b;归母净利润率从-26.1%提升…

卷积神经网络全解!CNN结构、训练与优化全维度介绍!

目录 一、引言1.1 背景和重要性1.2 卷积神经网络概述 二、卷积神经网络层介绍2.1 卷积操作卷积核与特征映射卷积核大小多通道卷积 步长与填充步长填充 空洞卷积&#xff08;Dilated Convolution&#xff09;分组卷积&#xff08;Grouped Convolution&#xff09; 2.2 激活函数R…

相机的位姿在地固坐标系ECEF和ENU坐标系的转换

在地球科学和导航领域&#xff0c;通常使用地心地固坐标系&#xff08;ECEF&#xff0c;Earth-Centered, Earth-Fixed&#xff09;和东北天坐标系&#xff08;ENU&#xff0c;East-North-Up&#xff09;来描述地球上的位置和姿态。如下图所示&#xff1a; ​地心地固坐标ecef和…

EV PV AC SPI CPI TCPI

SPI EV / PV CPI EV / ACCPI 1.25 SPI 0.8 PV 10 000 BAC 100 000EV PV * SPI 10 000 * 0.8 8000 AC EV / CPI 8000 / 1.25 6400TCPI (BAC - EV) / (BAC -AC) (100 000 - 8 000) / (100 000 - 6 400) 92 000 / 93 600 0.98290598

SCSS 学习笔记 和 vscode下载live sass compiler插件配置

1、下载livelive sass compiler插件并配置 // 在 已有代码 下面 添加下面 代码&#xff0c;一般刚刚下载打开最后一行是&#xff1a;// "liveSassCompile.settings.autoprefix": [],// 所以直接 把下面复制进去保存就行"liveSassCompile.settings.autoprefix&qu…

基于Java+SpringBoot+Vue的乌鲁木齐南山冰雪旅游服务网站【源码+论文+演示视频+包运行成功】

博主介绍&#xff1a;✌csdn特邀作者、博客专家、java领域优质创作者、博客之星&#xff0c;擅长Java、微信小程序、Python、Android等技术&#xff0c;专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推…

MVCC 是否彻底解决了事物的隔离性 ?

目录 1. 什么是 MVCC 2. MVCC 是否彻底解决了事物的隔离性 3. MySQL 中如何实现共享锁和排他锁 4. MySQL 中如何实现悲观锁和乐观锁 1. 什么是 MVCC MVCC&#xff08;Multi-Version Concurrency Control&#xff0c;多版本并发控制&#xff09;是一种多版本并发控制机制&…

webpack 和 ts 简单配置及使用

如何使用webpack 与 ts结合使用 新建项目 &#xff0c;执行项目初始化 npm init -y会生成 {"name": "tsdemo01","version": "1.0.0","description": "","main": "index.js","scripts&…

自动驾驶数据集汇总

1.Nuscenes 数据集链接&#xff1a;nuScenes nuscenes数据集下有多个任务&#xff0c;涉及Detection&#xff08;2D/3D&#xff09;、Tracking、prediction、激光雷达分割、全景任务、规划控制等多个任务&#xff1b; nuScenes数据集是一个具有三维目标注释的大型自动驾驶数…

2023-8-15差分矩阵

题目链接&#xff1a;差分矩阵 #include <iostream>using namespace std;const int N 1010;int n, m, q; int a[N][N], b[N][N];void insert(int x1, int y1, int x2, int y2, int c) {b[x1][y1] c;b[x1][y2 1] - c;b[x2 1][y1] - c;b[x2 1][y2 1] c; }int main…

基于SOLIDWORKS配置功能建立塑料模具标准件库

在塑料模具的设计过程中&#xff0c;建立其三维模型对于后续进行CAE分析和CAM加工是非常重要的。除了型腔和型芯以外&#xff0c;塑料模具中的标准件很多&#xff0c;如推杆、导柱、导套、推板、限位钉等&#xff0c;这些对于不同的产品是需要反复调用的。目前&#xff0c;我国…

汽车OTA活动高质量发展的“常”与“新”

伴随着车主的频繁崔更&#xff0c;车企除了卷硬件、拼价格&#xff0c;逐渐将精力转移到汽车全生命周期的常用常新。时至下半年&#xff0c;车企OTA圈愈发热闹&#xff0c;以新势力、新实力为代表新一代车企&#xff0c;OTA运营活动逐渐进入高质量发展期。 所谓高质量&#xf…