[密码学][困难问题][常见规约]密码学问题常见困难问题

参考网址(科学上网)
密码学问题常见困难问题,需要点击参考网址进行查找
其困难问题的介绍非常友好,请根据目录快速找到相关资料
在这里插入图片描述
在这里插入图片描述

以下是检索 目录

Discrete logarithm problem

DLP: discrete logarithm problem
CDH: computational Diffie-Hellman problem
SDH: static Diffie-Hellman problem
gap-CDH: Gap Diffie-Hellman problem
DDH: decision Diffie-Hellman problem
Strong-DDH: strong decision Diffie-Hellman problem
sDDH: skewed decision Diffie-Hellman problem
PDDH: parallel decision Diffie-Hellman problem
Square-DH: Square Diffie-Hellman problem
l-DHI: l-Diffie-Hellman inversion problem
l-DDHI: l-Decisional Diffie-Hellman inversion problem
REPRESENTATION: Representation problem
LRSW: LRSW Problem
Linear: Linear problem
D-Linear1: Decision Linear problem (version 1)
l-SDH: l-Strong Diffie-Hellman problem
c-DLSE: Discrete Logarithm with Short Exponents
CONF: (conference-key sharing scheme)
3PASS: 3-Pass Message Transmission Scheme
LUCAS: Lucas Problem
XLP: x-Logarithm Problem
MDHP: Matching Diffie-Hellman Problem
DDLP: Double Discrete Logarithm Problem
rootDLP: Root of Discrete Logarithm Problem
n-M-DDH: Multiple Decision Diffie-Hellman Problem
l-HENSEL-DLP: l-Hensel Discrete Logarithm Problem
DLP(Inn(G)): Discrete Logarithm Problem over Inner Automorphism Group
IE: Inverse Exponent
TDH: The Twin Diffie-Hellman Assumption
XTR-DL: XTR discrete logarithm problem
XTR-DH: XTR Diffie-Hellman problem
XTR-DHD: XTR decision Diffie-Hellman problem
CL-DLP: discrete logarithms in class groups of imaginary quadratic orders
TV-DDH: Tzeng Variant Decision Diffie-Hellman problem
n-DHE: n-Diffie-Hellman Exponent problem

Factoring

FACTORING: integer factorisation problem
SQRT: square roots modulo a composite
CHARACTERd: character problem
MOVAd: character problem
CYCLOFACTd: factorisation in Z[θ]
FERMATd: factorisation in Z[θ]
RSAP: RSA problem
Strong-RSAP: strong RSA problem
Difference-RSAP: Difference RSA problem
Partial-DL-ZN2P: Partial Discrete Logarithm problem in Z∗n
DDH-ZN2P: Decision Diffie-Hellman problem over Z∗n
Lift-DH-ZN2P: Lift Diffie-Hellman problem over Z∗n
EPHP: Election Privacy Homomorphism problem
AERP: Approximate e-th root problem
l-HENSEL-RSAP: l-Hensel RSA
DSeRP: Decisional Small e-Residues in Z∗n2
DS2eRP: Decisional Small 2e-Residues in Z∗n2
DSmallRSAKP: Decisional Reciprocal RSA-Paillier in Z∗n2
HRP: Higher Residuosity Problem
ECSQRT: Square roots in elliptic curve groups over Z/nZ
RFP: Root Finding Problem
phiA: PHI-Assumption
C-DRSA: Computational Dependent-RSA problem
D-DRSA: Decisional Dependent-RSA problem
E-DRSA: Extraction Dependent-RSA problem
DCR: Decisional Composite Residuosity problem
CRC: Composite Residuosity Class problem
DCRC: Decisional Composite Residuosity Class problem
GenBBS: generalised Blum-Blum-Shub assumption

Product groups

co-CDH: co-Computational Diffie-Hellman Problem
PG-CDH: Computational Diffie-Hellman Problem for Product Groups
XDDH: External Decision Diffie-Hellman Problem
D-Linear2: Decision Linear Problem (version 2)
PG-DLIN: Decision Linear Problem for Product Groups
FSDH: Flexible Square Diffie-Hellman Problem
KSW1: Assumption 1 of Katz-Sahai-Waters

Pairings

BDHP: Bilinear Diffie-Hellman Problem
DBDH: Decision Bilinear Diffie-Hellman Problem
B-DLIN: Bilinear Decision-Linear Problem
l-BDHI: l-Bilinear Diffie-Hellman Inversion Problem
l-DBDHI: l-Bilinear Decision Diffie-Hellman Inversion Problem
l-wBDHI: l-weak Bilinear Diffie-Hellman Inversion Problem
l-wDBDHI: l-weak Decisional Bilinear Diffie-Hellman Inversion Problem
KSW2: Assumption 2 of Katz-Sahai-Waters
MSEDH: Multi-sequence of Exponents Diffie-Hellman Assumption

Lattices

Main Lattice Problems

SVPγp: (Approximate) Shortest vector problem
CVPpγ: (Approximate) Closest vector problem
GapSVPpγ: Decisional shortest vector problem
GapCVPpγ: Decisional closest vector problem

Modular Lattice Problems

SISp(n,m,q,β): Short integer solution problem
ISISp(n,m,q,β): Inhomogeneous short integer solution problem
LWE(n,q,φ): Learning with errors problem

Miscellaneous Lattice Problems

USVPp(n,γ): Approximate unique shortest vector problem
SBPp(n,γ): Approximate shortest basis problem
SLPp(n,γ): Approximate shortest length problem
SIVPp(n,γ): Approximate shortest independent vector problem
hermiteSVP: Hermite shortest vector problem
CRP: Covering radius problem

Ideal Lattice Problems

Ideal-SVPf,pγ: (Approximate) Ideal shortest vector problem / Shortest polynomial problem
Ideal-SISf,p q,m,β: Ideal small integer solution problem

Miscellaneous Problems

KEA1: Knowledge of Exponent assumption
MQ: Multivariable Quadratic equations
CF: Given-weight codeword finding
ConjSP: Braid group conjugacy search problem
GenConjSP: Generalised braid group conjugacy search problem
ConjDecomP: Braid group conjugacy decomposition problem
ConjDP: Braid group conjugacy decision problem
DHCP: Braid group decisional Diffie-Hellman-type conjugacy problem
ConjSearch: (multiple simlutaneous) Braid group conjugacy search problem
SubConjSearch: subgroup restricted Braid group conjugacy search problem
LINPOLY : A linear algebra problem on polynomials
HFE-DP: Hidden Field Equations Decomposition Problem
HFE-SP: Hidden Field Equations Solving Problem
MKS: Multiplicative Knapsack
BP: Balance Problem
AHA: Adaptive Hardness Assumptions
SPI: Sparse Polynomial Interpolation
SPP: Self-Power Problem
VDP: Vector Decomposition Problem
2-DL: 2-generalized Discrete Logarithm Problem

Problem Details

The full paper provides details about each assumption. Here is an example entry:

CDH: computational Diffie-Hellman problem

Definition :

Given ga,gb∈G to compute gab.

Reductions:

  • CDH ≤p DLP
  • DLP ≤subexp CDH in groups of squarefree order.

Algorithms:

The best known algorithm for CDH is to actually solve the DLP.

Use in cryptography: Diffie-Hellman key exchange and variants, Elgamal encryption and variants, BLS signatures and variants.

History:

Discovered by W. Diffie and M. Hellman.

Remark:

A variant of CDH is: Given g0,ga0,gb0∈G to compute gab0. This is ≡p CDH.

References:

  • W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol. IT-22, No. 6, Nov. 1976, p. 644-654.

  • U.M. Maurer and S. Wolf, Diffie-Hellman Oracles, Proceedings of CRYPTO ’96, p. 268-282.

  • D. Boneh and R.J. Lipton Algorithms for Black-Box Fields and Applications to Cryp- tography, Proceedings of CRYPTO ’96, p. 283-297.

The complete text is far too long to copy paste here, but this provides a pretty good example of how extensive and thorough it is.

Addendum: Unlisted Problem(s)

The following problem(s) were not listed in the above reference:

  • MIHNP: Modular Inversion Hidden Number Problem
  • AGCD: Approximate Greatest Common Divisor
  • SIP: Small Inverse Problem

Subset Sum/Knapsack problem

  • Subset Sum problem
    • (0,1) knapsack problem (The standard version of the problem)
  • Bounded knapsack problem
  • Unbounded knapsack problem
  • RMSS: Random Modular Subset Sum

Note about parameters

Hardness assumptions only hold when parameterized correctly. Inappropriate parameters can lead to easily solved instances of hard problems.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/424615.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构四——散列表(下)

文章出处:极客时间《数据结构和算法之美》-作者:王争。该系列文章是本人的学习笔记。 7 散列表链表的应用 很多情况下散列表会和链表一起使用。散列表可以通过key查找value。链表可以按照value进行排序。这样就能通过value查找key,也可以通…

spring学习(2):初始化spring程序

接着上一节的课程继续学习 MesasageService 类 package hello;import org.springframework.stereotype.Component; //注解的加入 Component public class MesasageService {public MesasageService() {super();System.out.println("MessageService...");}/*** 执行打…

Asp.Net Core 第05局:读取配置

前言 本文介绍Asp.Net Core 读取配置文件。环境 1.Visual Studio 2017 2.Asp.Net Core 2.2 开局 前期准备 1.添加app.json文件并在里面添加内容; 2.将app.json文件配置到应用中; 3.添加app.json对应的AppConfig类; 4.下面三种方式读取配置文…

[BUGKU][CTF][PWN][2020] PWN writeup

准备UBUNTU pwndbg pwntools PWN1 关键字:nc 知识点:nc使用方法 https://www.cnblogs.com/nmap/p/6148306.html nc命令是一个功能打包的网络实用程序,它通过命令行在网络上读取和写入数据;nc是为NMAP项目编写的,是目前已分裂的ne…

spring学习(3):获取bean对象

接着上一节的课程继续学习 MesasageService 类 package hello;import org.springframework.stereotype.Component; //注解的加入 Component public class MesasageService {public MesasageService() {super();System.out.println("MessageService...");}/*** 执行打…

数据结构四——散列表(上)

文章出处:极客时间《数据结构和算法之美》-作者:王争。该系列文章是本人的学习笔记。 1散列表的由来 从数组随机访问特性说起。  数组的随机访问特性是:数组a,a[5]可以直接访问到数组的第6个元素。这就类似于在下标和数组对应的值之间建立…

[BUGKU][CTF][Reverse][2020] Reverse writeup 1-7 暂时肝不动了

Reverse 入门逆向 步骤: ida main函数 按R Reverse signin 关键字: 知识点:Android逆向分析。(常用工具:安卓模拟器、JEB、Cyberchef、Androidkiller) 步骤: 1.用jeb打开,找到MainActivity,右…

spring学习(4):spring管理对象之间的关联关系

接着上一节的课程继续学习 MesasageService 类 package hello;import org.springframework.stereotype.Component; //注解的加入 Component public class MesasageService {public MesasageService() {super();System.out.println("MessageService...");}/*** 执行打…

[Lua]LuaAPI整理

ref :https://blog.csdn.net/ouyangshima/article/details/43339571 LUA和C/C的沟通桥梁——栈 Lua生来就是为了和C交互的,因此使用C扩展Lua或者将Lua嵌入到C当中都是非常流行的做法。要想理解C和Lua的交互方式,首先要回顾一下C语言是如何处理…

[hackinglab][CTF][基础关][2020] hackinglab 基础关 writeup

在线工具:https://www.qqxiuzi.cn/daohang.htm 基础关 1 key在哪里? 知识点:F12查看源代码 步骤:F12 基础关 2 再加密一次你就得到key啦~ 知识点:ROT13 步骤: 基础关 3 猜猜这是经过了多少次加密? 关键字&#xf…

spring学习(5):spring简介

1什么是spring 核心概念 spring框架组成

算法四——哈希

文章出处:极客时间《数据结构和算法之美》-作者:王争。该系列文章是本人的学习笔记。 哈希算法的定义 文章来自极客时间。 参考网页 定义:将任意长度的二进制值串映射为固定长度的二进制值串。映射之后的二进制值串称为哈希值。 符合几点要…

spring学习(6):使用xml方式实现spring基本应用

接着上一节的课程继续学习 在resources文件下建立applicationconText applicationconText.xml文件 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmlns:xsi"http://www.w3…

[burp][CTF]burp intruder爆破出现 Payload set 1: Invalid number settings的解决办法

这是一个软件bug 如果点击start attrack 后出现 Payload set 1: Invalid number settings 的提示&#xff0c;先点hex 后点 decimal 再开始start attrack&#xff0c;需要手动让它刷新。

数据结构五——二叉树

文章出处&#xff1a;极客时间《数据结构和算法之美》-作者&#xff1a;王争。该系列文章是本人的学习笔记。 1 树 1.1 概念 概念&#xff1a;树、根、父节点、子节点、叶子节点。 几个度&#xff1a;高度、深度、层。与实际生活中的这几个概念类比。 高度&#xff1a;从下往…

spring学习(7):加入log4g日志系统

点击show dependencies popup 修改pom.xml文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation&quo…

[hackinglab][CTF][脚本关][2020] hackinglab 脚本关 writeup

脚本关 1 key又又找不到了 关键字&#xff1a; 知识点&#xff1a; 步骤:点击提供的链接后&#xff0c;实际发生了两次跳转&#xff0c;key 在第一次跳转的网页中&#xff0c;key is : yougotit_script_now 脚本关 2 快速口算 关键字&#xff1a; 知识点&#xff1a;python基…

用递归树求解递归算法时间复杂度

文章内容、图片均来自极客时间。 递归代码复杂度分析起来比较麻烦。一般来说有两种分析方法&#xff1a;递推公式和递归树。 1 递推公式法 归并排序的递推公式是&#xff1a; merge_sort(p…r) merge(merge_sort(p…q), merge_sort(q1…r)) 终止条件&#xff1a; p > r …

spring学习(8):log4j.properties 详解与配置步骤

一、入门实例 1.新建一个JAva工程&#xff0c;导入包log4j-1.2.17.jar&#xff0c;整个工程最终目录如下 2、src同级创建并设置log4j.properties ### 设置### log4j.rootLogger debug,stdout,D,E### 输出信息到控制抬 ### log4j.appender.stdout org.apache.log4j.ConsoleAp…

[hackinglab][CTF][注入关][2020] hackinglab 注入关 writeup

服务器挂了 咕咕咕 参考链接&#xff1a;https://blog.csdn.net/weixin_41924764/article/details/107095963?utm_mediumdistribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&depth_1-utm_sourcedistribute.pc_relevant_t0.none-task-bl…