直方图均衡化和自适应直方图均衡化

前言: Hello大家好,我是Dream。 均衡化是数字图像处理中常用的一种技术,用于增强图像的视觉效果和对比度。,今天我们将实现对同一张图像的直方图均衡化自适应直方图均衡化处理,学习一下两者的的基本原理和实现过程,一起来看看吧~

一、直方图均衡化

直方图均衡化(Histogram Equalization)是一种图像处理技术,通过重新分配图像灰度级别来增强图像的对比度和视觉效果。它基于整个图像的灰度直方图来调整像素的灰度值分布。通过增加较暗区域的亮度和减少较亮区域的亮度,直方图均衡化可以使图像的灰度级别分布更均匀,从而增强图像的细节和对比度。

1.得到灰度图

通过三同道的彩色图生成单通道的灰度图
首先,我们使用PIL库中的Image.open()函数读取彩色图像,并将其转换为数组。然后,我们获取图像的高度和宽度,并创建一个与原始图像大小相同、数据类型为uint8的全黑数组gray_img,用于保存灰度图像。

接着,我们遍历每个像素,将三个通道的值求平均,并将结果保存到灰度图像中。由于RGB图像的三个通道具有相同的权重,因此将三个通道的值求平均可以得到一个比较准确的灰度值。

然后,我们将灰度图像转换为PIL图像对象,并使用Matplotlib库中的plt.imshow()函数显示彩色图像和灰度图像。最后,我们使用PIL库中的Image.save()函数将灰度图像保存为文件。

import numpy as np
import cv2
from PIL import Image
import matplotlib.pyplot as plt# 读取彩色图像
img = Image.open('image.jpg')# 将图像转换为数组
img_arr = np.array(img)# 获取图像的高度和宽度
h, w, _ = img_arr.shape# 创建一个新的数组,用于保存灰度图像
gray_img = np.zeros((h, w), dtype=np.uint8)# 遍历每个像素,将三个通道的值求平均,并保存到灰度图像中
for i in range(h):for j in range(w):gray_img[i, j] = int(np.mean(img_arr[i, j]))# 将灰度图像转换为PIL图像对象
gray_pil_img = Image.fromarray(gray_img)
plt.imshow(img)
plt.title('imge')
plt.axis('off')
plt.show()
plt.imshow(gray_pil_img, cmap='gray')
plt.title('gray_pil_imge')
plt.axis('off')
plt.show()
# 保存灰度图像
gray_pil_img.save('gray_image.jpg')

在这里插入图片描述
在这里插入图片描述

2. 直方图统计

使用PIL库中的Image.open()函数读取灰度图像,并使用convert('L')方法将图像转换为灰度模式。然后,我们获取图像的宽度和高度,并创建一个长度为256的全0列表hist,用于保存直方图统计结果。

接着,遍历每个像素,获取其灰度值,并将对应的直方图计数器加1。最后,我们输出直方图统计结果,即每个灰度值出现的像素数。

# 读取灰度图像
gray_img = Image.open('gray_image.jpg').convert('L')
width, height = gray_img.size# 统计直方图
hist = [0] * 256
for y in range(height):for x in range(width):pixel = gray_img.getpixel((x, y))hist[pixel] += 1
print(hist)
# 输出直方图统计结果
for i in range(len(hist)):print("灰度值 %d: %d 个像素" % (i, hist[i]))

在这里插入图片描述

3. 绘制直方图

# 绘制直方图
plt.bar(range(256), hist)
plt.show()

在这里插入图片描述

4. 直方图均衡化

使图片有更好的视觉效果,有更高的对比度,即像素的灰度分布更平均
首先,我们使用PIL库中的histogram()函数对灰度图像进行直方图统计,得到一个长度为256的列表equ_img,其中每个元素表示对应灰度级别的像素数量。

接着,我们创建一个空列表lut,用于保存灰度级别的映射表。然后,通过遍历equ_img列表,将每个灰度级别的像素数量除以255得到一个步长step,表示每个灰度级别在均衡化后的直方图中所占的比例。接下来,我们定义一个变量n,初始化为0,用于记录当前累积的像素数量。

在内层循环中,我们遍历256个灰度级别,并将当前累积的像素数量除以步长step得到一个映射值n / step。这个映射值表示当前灰度级别在均衡化后的直方图中所对应的灰度级别。

最后,我们使用PIL库中的point()方法,根据映射表lut将灰度图像进行映射,得到均衡化后的图像equ_img。在这里,lut列表中的值被用作灰度级别的映射,'L'参数表示输出图像的模式为灰度模式。

这样,经过直方图均衡化处理后,图像的灰度分布将更加均匀,增强了图像的对比度和细节。

# 直方图均衡化
equ_img = gray_img.histogram()
lut = []
for b in range(0, len(equ_img), 256):step = sum(equ_img[b:b+256]) / 255n = 0for i in range(256):lut.append(n / step)n += equ_img[b+i]
equ_img = gray_img.point(lut, 'L')# 显示原始图像和均衡化后的图像
plt.imshow(gray_img, cmap='gray')
plt.title('Original Image')
plt.axis('off')
plt.show()plt.imshow(equ_img, cmap='gray')
plt.title('Equalized Image')
plt.axis('off')
plt.show()# 保存原始图像和均衡化后的图像
gray_img.save('Original.jpg')
equ_img.save('Equalized.jpg')# 统计均衡化后的直方图
hist_equ = equ_img.histogram()# 绘制均衡化前后的直方图
plt.hist(gray_img.histogram(), 256, [0, 256])
plt.title('Original Image')
plt.xlim([0, 256])
plt.show()plt.hist(hist_equ, 256, [0, 256])
plt.title('Equalized Image')
plt.xlim([0, 256])
plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、自适应直方图均衡化

自适应直方图均衡化(Adaptive Histogram Equalization)是直方图均衡化的一种变体,它考虑到图像中不同区域的局部差异。与直方图均衡化不同,自适应直方图均衡化将图像分成多个小块,并在每个小块内独立地应用直方图均衡化。通过这种方式,自适应直方图均衡化可以更好地保留图像的细节,并避免过度增强噪声。自适应直方图均衡化可以根据图像的局部特征自动调整每个小块的灰度级别,以实现更精细的图像增强。

1.自适应直方图均衡化(AHE)

AHE是一种局部直方图均衡化方法,它将图像分成若干个小区域,对每个小区域进行直方图均衡化处理,从而增强图像的对比度。该算法的核心思想是在每个小区域内计算直方图,并将其变换为累积分布函数(CDF),然后将CDF拉伸以增加对比度。因此,AHE可以有效地增强图像中的局部细节信息。
在此处,我们的输入参数包括原始图像img和窗口大小window_size。首先,函数遍历每个像素,获取以该像素为中心的大小为window_size的窗口。如果窗口越界,则跳过该像素。然后,计算窗口的直方图,并计算其累积分布函数。接着,将CDF归一化并拉伸,以增加窗口内像素的对比度。最后,将均衡化后的像素值放回原图中,得到均衡化后的结果。

# 自适应直方图均衡化(AHE)
def adaptive_histogram_equalization(img, window_size):# 获取图像大小height, width = img.shape[:2]# 创建一个全黑的图像result = np.zeros((height, width), dtype=np.uint8)# 遍历每个像素for i in range(height):for j in range(width):# 获取窗口中心点center_x, center_y = i + window_size // 2, j + window_size // 2# 如果窗口越界,则跳过if center_x < window_size // 2 or center_x >= height - window_size // 2 or center_y < window_size // 2 or center_y >= width - window_size // 2:continue# 获取窗口window = img[center_x - window_size // 2:center_x + window_size // 2 + 1, center_y - window_size // 2:center_y + window_size // 2 + 1]# 计算窗口的直方图hist, _ = np.histogram(window.ravel(), 256, [0, 256])# 计算累积分布函数cdf = hist.cumsum()# 归一化cdf_normalized = cdf * 255 / cdf[-1]# 将均衡化后的像素值放回原图中result[i][j] = cdf_normalized[img[i][j]]return result

2.限制对比度自适应直方图均衡化(CRHE)

CRHE是在AHE的基础上增加了对比度限制。它通过在AHE之后对像素值进行限制,以避免过度增加对比度而导致噪声的出现。该算法的核心思想是先使用AHE增强图像的对比度,然后使用限制对比度的方法对像素值进行截断,从而控制对比度的增加。
在代码中,输入参数包括原始图像img、窗口大小window_size和对比度限制因子clip_limit。首先,调用自己实现的自适应直方图均衡化函数adaptive_histogram_equalization对原始图像进行直方图均衡化处理,得到均衡化后的结果。接着,使用OpenCV库中的cv2.createCLAHE函数创建一个限制对比度的CLAHE对象,并将均衡化后的图像作为输入进行处理。

# 限制对比度自适应直方图均衡化(CRHE)
def contrast_limited_adaptive_histogram_equalization(img, window_size, clip_limit):# 使用自己实现的自适应直方图均衡化ahe_img = adaptive_histogram_equalization(img, window_size)# 使用OpenCV库实现限制对比度自适应直方图均衡化clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=(window_size, window_size))result = clahe.apply(ahe_img)return result

3.读取图片

# 读取图片
img = cv2.imread("image.jpg", cv2.IMREAD_GRAYSCALE)

4.自适应直方图均衡化

首先创建一个与原始图像img相同大小的全黑图像ahe_result,用于保存处理后的结果。然后,使用一个循环遍历多个窗口尺寸,依次调用自适应直方图均衡化函数adaptive_histogram_equalization对原始图像进行处理,并将处理后的结果加到ahe_result中。最后得到多个尺寸的均衡化结果的平均值,作为最终的均衡化结果。

我们使用了不同尺寸的窗口,分别为50、100、150和200。最后将这四个结果取平均值作为最终结果,这种方法可以提高均衡化的效果,因为不同尺寸的窗口可以捕捉到图像中不同尺度的局部细节信息,从而增强图像的对比度和细节信息,避免过大或过小的窗口对结果产生较大影响。

# 自适应直方图均衡化
# 创建一个和原始图像大小相同的全零数组ahe_result,用于存储最终的自适应直方图均衡化结果ahe_result = np.zeros_like(img)# 遍历不同的窗口大小,从50到200,步长为50
for window_size in range(50, 201, 50):# 对原始图像img进行自适应直方图均衡化操作,使用当前窗口大小window_sizeahe_img = adaptive_histogram_equalization(img, window_size)# 将每次处理后的图像ahe_img累加到ahe_result中ahe_result += ahe_img# 将ahe_result除以4取整,得到最终的自适应直方图均衡化结果
ahe_result //= 4

5.限制对比度自适应直方图均衡化

首先创建一个与原始图像img相同大小的全黑图像crhe_result,用于保存处理后的结果。然后,使用一个循环遍历多个窗口尺寸,依次调用限制对比度自适应直方图均衡化函数对原始图像进行处理,并将处理后的结果加到crhe_result中。在本例中,设置对比度限制因子clip_limit为2.0。
我们使用了不同尺寸的窗口,分别为50、100、150和200。最后将这四个结果取平均值作为最终结果,避免过大或过小的窗口对结果产生较大影响。

# 限制对比度自适应直方图均衡化
# 创建一个和原始图像大小相同的全零数组crhe_result,用于存储最终的限制对比度自适应直方图均衡化结果crhe_result = np.zeros_like(img)# 遍历不同的窗口大小,从50到200,步长为50
for window_size in range(50, 201, 50):# 对原始图像img进行限制对比度自适应直方图均衡化操作,使用当前窗口大小window_size和对比度限制参数2.0crhe_img = contrast_limited_adaptive_histogram_equalization(img, window_size, 2.0)# 将每次处理后的图像crhe_img累加到crhe_result中crhe_result += crhe_img# 将crhe_result除以4取整,得到最终的限制对比度自适应直方图均衡化结果
crhe_result //= 4

6.可视化显示结果

# 显示结果
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(12, 8))
ax[0].imshow(img, cmap='gray')
ax[0].set_title('Original1 Image')
ax[1].imshow(ahe_result, cmap='gray')
ax[1].set_title('AHE1 Image')
ax[2].imshow(crhe_result, cmap='gray')
ax[2].set_title('CRHE1 Image')
plt.show()

在这里插入图片描述

三、对比总结

直方图均衡化(Histogram Equalization)和自适应直方图均衡化(Adaptive Histogram Equalization)都是用于图像增强的技术,目的是改善图像的对比度和视觉效果。它们的主要区别在于处理图像的方式和局部性

直方图均衡化是一种全局的方法,它基于整个图像的灰度直方图来调整像素的灰度值分布。通过使灰度级别在图像中更均匀地分布,直方图均衡化可以增强图像的对比度和细节。它使用累积分布函数将原始图像中的灰度级别映射到一个新的灰度范围,从而实现图像的均衡化。

然而,直方图均衡化是一种全局的方法,它没有考虑到图像中不同区域的局部差异。这可能会导致图像的某些区域过度增强或细节丢失的问题。为了解决这个问题,自适应直方图均衡化应运而生。

自适应直方图均衡化是一种局部的方法,在处理图像时会考虑到不同区域的灰度分布情况。它将图像分成许多小区域,对每个区域独立地应用直方图均衡化。通过这种方式,自适应直方图均衡化可以更好地保留图像细节,并避免过度放大噪声。

自适应直方图均衡化的一种常见变体是自适应直方图均衡化(CLAHE),它在每个小区域中使用对比度限制来防止过度放大噪声。CLAHE的核心思想是将图像分成许多小块,然后对每个小块进行局部直方图均衡化,并对像素值进行裁剪以限制对比度的增强程度。通过这种方式,CLAHE在增强图像细节的同时有效控制了噪声的增强。

总而言之,直方图均衡化是一种全局的方法,通过整个图像的灰度直方图来增强图像对比度。自适应直方图均衡化是一种局部的方法,通过对图像的小块进行独立的直方图均衡化来增强图像,并通过对比度限制来控制噪声的放大

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/42402.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React 高阶组件(HOC)

React 高阶组件(HOC) 高阶组件不是 React API 的一部分&#xff0c;而是一种用来复用组件逻辑而衍生出来的一种技术。 什么是高阶组件 高阶组件就是一个函数&#xff0c;且该函数接受一个组件作为参数&#xff0c;并返回一个新的组件。基本上&#xff0c;这是从 React 的组成…

docker 安装elasticsearch、kibana

下载es镜像 docker pull elasticsearch 启动es容器 docker run --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.typesingle-node" -e ES_JAVA_OPTS"-Xms512m -Xmx512m" -d elasticsearch 验证es界面访问 ​​​​​http://节点ip:9200/ ​…

client-go实战之十二:选主(leader-election)

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 本篇概览 本文是《client-go实战》系列的第十二篇&#xff0c;又有一个精彩的知识点在本章呈现&#xff1a;选主(leader-election)在解释什么是选主之前&…

【自用】云服务器 docker 环境下 HomeAssistant 安装 HACS 教程

一、进入 docker 中的 HomeAssistant 1.查找 HomeAssistant 的 CONTAINER ID 连接上云服务器&#xff08;宿主机&#xff09;后&#xff0c;终端内进入 root &#xff0c;输入&#xff1a; docker ps找到了 docker 的 container ID 2.config HomeAssistant 输入下面的命令&…

修改el-table行悬停状态的背景颜色

.content:deep().el-table tr:hover>td {background-color: #f5f5f5 !important; /* 设置悬停时的背景颜色 */ }/*这一点很重要&#xff0c;否则可能会导致hover行时操作列还是原来的背景色*/ .content:deep().el-table__body tr.hover-row>td{background-color: #f5f5f5…

使用Nacos配置中心动态管理Spring Boot应用配置

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

Linux权限系列--给普通用户添加某个命令的sudo权限

原文网址&#xff1a;Linux权限系列--给普通用户添加某个命令的sudo权限_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍Linux系统如何给普通用户添加某个命令的sudo权限。 使用场景 普通开发者可能需要sudo的命令&#xff1a; apt-get&#xff08;经常要安装软件&#x…

Java IO流(一)IO基础

概述 IO流本质 I/O表示Input/Output,即数据传输过程中的输入/输出,并且输入和输出都是相对于内存来讲Java IO(输入/输出)流是Java用于处理数据读取和写入的关键组件常见的I|O介质包括 文件(输入|输出)网络(输入|输出)键盘(输出)显示器(输出)使用场景 文件拷贝&#xff08;File&…

算法竞赛入门【码蹄集新手村600题】(MT1160-1180)C语言

算法竞赛入门【码蹄集新手村600题】(MT1160-1180&#xff09;C语言 目录MT1161 N的零MT1162 数组最大公约数MT1163 孪生质数MT1164 最大数字MT1165 卡罗尔数MT1166 自守数MT1167自守数IIMT1168 阶乘数MT1169 平衡数MT1170 四叶玫瑰数MT1171 幻数MT1172 完美数字MT1173 魔数MT11…

WebGL游戏站优化实录【myshmup.com】

myshmup.com 允许在浏览器中创建 shmup&#xff08;射击&#xff09;游戏。 你可以使用具有创意通用许可证的资源或上传自己的艺术作品和声音。 创建的游戏可以在网站上发布。 该平台不需要编码&#xff0c;游戏对象的配置是在用户界面的帮助下执行的。 后端是使用Django框架开…

星际争霸之小霸王之小蜜蜂(三)--重构模块

目录 前言 一、为什么要重构模块 二、创建game_functions 三、创建update_screen() 四、修改alien_invasion模块 五、课后思考 总结 前言 前两天我们已经成功创建了窗口&#xff0c;并将小蜜蜂放在窗口的最下方中间位置&#xff0c;本来以为今天将学习控制小蜜蜂&#xff0c;结…

GPT-4一纸重洗:从97.6%降至2.4%的巨大挑战

斯坦福大学和加州大学伯克利分校合作进行的一项 “How Is ChatGPTs Behavior Changing Over Time?” 研究表明&#xff0c;随着时间的推移&#xff0c;GPT-4 的响应能力非但没有提高&#xff0c;反而随着语言模型的进一步更新而变得更糟糕。 研究小组评估了 2023 年 3 月和 20…

win10安装mysql和c++读取调用举例

一、下载mysql8.rar解压到C盘(也可以解压到其他位置) 在系统环境变量添加JAVA_HOMEC:\myslq8&#xff0c;并在path中添加%JAVA_HOME%\bin; 二、以管理员身份进入命令窗口 三、修改配置文件指定安装路径和数据库的存放路径 四、键入如下命令初始化并启动mysql服务,然后修改登录…

TDD(测试驱动开发)?

01、前言 很早之前&#xff0c;曾在网络上见到过 TDD 这 3 个大写的英文字母&#xff0c;它是 Test Driven Development 这三个单词的缩写&#xff0c;也就是“测试驱动开发”的意思——听起来很不错的一种理念。 其理念主要是确保两件事&#xff1a; 确保所有的需求都能被照…

macOS Ventura 13.5.1(22G90)发布(附黑/白苹果系统镜像地址)

系统镜像下载&#xff1a;百度&#xff1a;黑果魏叔 系统介绍 黑果魏叔 8 月 18 日消息&#xff0c;苹果今日向 Mac 电脑用户推送了 macOS 13.5.1 更新&#xff08;内部版本号&#xff1a;22G90&#xff09;&#xff0c;本次更新距离上次发布隔了 24 天。 本次更新重点修复了…

Redis 缓存过期及删除

一、Redis缓存过期策略 物理内存达到上限后&#xff0c;像磁盘空间申请虚拟内存(硬盘与内存的swap),甚至崩溃。 内存与硬盘交换 (swap) 虚拟内存&#xff0c;频繁I0 性能急剧下降&#xff0c;会造成redis内存急剧下降&#xff1b; 一般设置物理内存的3/4&#xff0c;在redis…

超分辨率地震速度模型

文献分享 1. Multitask Learning for Super-Resolution 原题目&#xff1a;Multitask Learning for Super-Resolution of Seismic Velocity Model 全波形反演&#xff08;FWI&#xff09;是估算地下速度模型的强大工具。与传统反演策略相比&#xff0c;FWI充分利用了地震波的…

typedef

t y p e d e f typedef typedef 声明&#xff0c;简称typedef&#xff0c;是创建现有类型的新名字。 比如&#xff1a; #include <bits/stdc.h> using namespace std; typedef long long ll; int main() {ll n;scanf("%lld",&n);printf("%lld"…

C++ 面向对象三大特性——多态

✅<1>主页&#xff1a;我的代码爱吃辣 &#x1f4c3;<2>知识讲解&#xff1a;C 继承 ☂️<3>开发环境&#xff1a;Visual Studio 2022 &#x1f4ac;<4>前言&#xff1a;面向对象三大特性的&#xff0c;封装&#xff0c;继承&#xff0c;多态&#xff…

30W IP网络有源音箱 校园广播音箱

SV-7042XT是深圳锐科达电子有限公司的一款2.0声道壁挂式网络有源音箱&#xff0c;具有10/100M以太网接口&#xff0c;可将网络音源通过自带的功放和喇叭输出播放&#xff0c;可达到功率30W。同时它可以外接一个30W的无源副音箱&#xff0c;用在面积较大的场所。5寸进口全频低音…