算法与数据结构(二十四)最优子结构原理和 dp 数组遍历方向

注:此文只在个人总结 labuladong 动态规划框架,仅限于学习交流,版权归原作者所有;

本文是两年前发的 动态规划答疑篇open in new window 的修订版,根据我的不断学习总结以及读者的评论反馈,我给扩展了更多内容,力求使本文成为继 动态规划核心套路框架 之后的一篇全面答疑文章。以下是正文。

这篇文章就给你讲明白以下几个问题:

1、到底什么才叫「最优子结构」,和动态规划什么关系。

2、如何判断一个问题是动态规划问题,即如何看出是否存在重叠子问题。

3、为什么经常看到将 dp 数组的大小设置为 n + 1 而不是 n

4、为什么动态规划遍历 dp 数组的方式五花八门,有的正着遍历,有的倒着遍历,有的斜着遍历。

注:

  1. 可以通过子问题推导出原问题就是证明有最优子结构,而最优子结构 + 重叠子问题 = 动态规划;

一、最优子结构详解

「最优子结构」是某些问题的一种特定性质,并不是动态规划问题专有的。也就是说,很多问题其实都具有最优子结构,只是其中大部分不具有重叠子问题,所以我们不把它们归为动态规划系列问题而已。

我先举个很容易理解的例子:假设你们学校有 10 个班,你已经计算出了每个班的最高考试成绩。那么现在我要求你计算全校最高的成绩,你会不会算?当然会,而且你不用重新遍历全校学生的分数进行比较,而是只要在这 10 个最高成绩中取最大的就是全校的最高成绩。

我给你提出的这个问题就符合最优子结构:可以从子问题的最优结果推出更大规模问题的最优结果。让你算每个班的最优成绩就是子问题,你知道所有子问题的答案后,就可以借此推出全校学生的最优成绩这个规模更大的问题的答案。

你看,这么简单的问题都有最优子结构性质,只是因为显然没有重叠子问题,所以我们简单地求最值肯定用不出动态规划。

再举个例子:假设你们学校有 10 个班,你已知每个班的最大分数差(最高分和最低分的差值)。那么现在我让你计算全校学生中的最大分数差,你会不会算?可以想办法算,但是肯定不能通过已知的这 10 个班的最大分数差推到出来。因为这 10 个班的最大分数差不一定就包含全校学生的最大分数差,比如全校的最大分数差可能是 3 班的最高分和 6 班的最低分之差。

这次我给你提出的问题就不符合最优子结构,因为你没办通过每个班的最优值推出全校的最优值,没办法通过子问题的最优值推出规模更大的问题的最优值。前文 动态规划详解 说过,想满足最优子结,子问题之间必须互相独立。全校的最大分数差可能出现在两个班之间,显然子问题不独立,所以这个问题本身不符合最优子结构。

那么遇到这种最优子结构失效情况,怎么办?策略是:改造问题。对于最大分数差这个问题,我们不是没办法利用已知的每个班的分数差吗,那我只能这样写一段暴力代码:

int result = 0;
for (Student a : school) {for (Student b : school) {if (a is b) continue;result = max(result, |a.score - b.score|);}
}
return result;

改造问题,也就是把问题等价转化:最大分数差,不就等价于最高分数和最低分数的差么,那不就是要求最高和最低分数么,不就是我们讨论的第一个问题么,不就具有最优子结构了么?那现在改变思路,借助最优子结构解决最值问题,再回过头解决最大分数差问题,是不是就高效多了?

当然,上面这个例子太简单了,不过请读者回顾一下,我们做动态规划问题,是不是一直在求各种最值,本质跟我们举的例子没啥区别,无非需要处理一下重叠子问题。

前文不 同定义不同解法 和 高楼扔鸡蛋问题 就展示了如何改造问题,不同的最优子结构,可能导致不同的解法和效率。

再举个常见但也十分简单的例子,求一棵二叉树的最大值,不难吧(简单起见,假设节点中的值都是非负数):

int maxVal(TreeNode root) {if (root == null)return -1;int left = maxVal(root.left);int right = maxVal(root.right);return max(root.val, left, right);
}

你看这个问题也符合最优子结构,以 root 为根的树的最大值,可以通过两边子树(子问题)的最大值推导出来,结合刚才学校和班级的例子,很容易理解吧。

当然这也不是动态规划问题,旨在说明,最优子结构并不是动态规划独有的一种性质,能求最值的问题大部分都具有这个性质;但反过来,最优子结构性质作为动态规划问题的必要条件,一定是让你求最值的,以后碰到那种恶心人的最值题,思路往动态规划想就对了,这就是套路。

动态规划不就是从最简单的 base case 往后推导吗,可以想象成一个链式反应,以小博大。但只有符合最优子结构的问题,才有发生这种链式反应的性质。

找最优子结构的过程,其实就是证明状态转移方程正确性的过程,方程符合最优子结构就可以写暴力解了,写出暴力解就可以看出有没有重叠子问题了,有则优化,无则 OK。这也是套路,经常刷题的读者应该能体会。

这里就不举那些正宗动态规划的例子了,读者可以翻翻历史文章,看看状态转移是如何遵循最优子结构的,这个话题就聊到这,下面再来看其他的动态规划迷惑行为。

注:

  1. 最优子结构只是动态规划问题的必要条件,比如求二叉树最大值,但是能求最值问题的大都具有最优子结构;
  2. 动态规划问题一定是让求最值的;
  3. 找最优子结构的过程,其实就是证明状态转移方程正确性的过程,方程符合最优子结构就可以写暴力解了,写出暴力解就可以看出有没有重叠子问题了,有则优化,无则 OK。这也是套路,经常刷题的读者应该能体会;

二、如何一眼看出重叠子问题

经常有读者说:

看了前文 动态规划核心套路,我知道了如何一步步优化动态规划问题;

看了前文 动态规划设计:数学归纳法,我知道了利用数学归纳法写出暴力解(状态转移方程)。

但就算我写出了暴力解,我很难判断这个解法是否存在重叠子问题,从而无法确定是否可以运用备忘录等方法去优化算法效率。

对于这个问题,其实我在动态规划系列的文章中写过几次,在这里再统一总结一下吧。

首先,最简单粗暴的方式就是画图,把递归树画出来,看看有没有重复的节点

比如最简单的例子,动态规划核心套路 中斐波那契数列的递归树:

在这里插入图片描述

这棵递归树很明显存在重复的节点,所以我们可以通过备忘录避免冗余计算。

但毕竟斐波那契数列问题太简单了,实际的动态规划问题比较复杂,比如二维甚至三维的动态规划,当然也可以画递归树,但不免有些复杂。

比如在 最小路径和问题 中,我们写出了这样一个暴力解法:

int dp(int[][] grid, int i, int j) {if (i == 0 && j == 0) {return grid[0][0];}if (i < 0 || j < 0) {return Integer.MAX_VALUE;}return Math.min(dp(grid, i - 1, j), dp(grid, i, j - 1)) + grid[i][j];
}

你不需要读过前文,光看这个函数代码就能看出来,该函数递归过程中参数 i, j 在不断变化,即「状态」是 (i, j) 的值,你是否可以判断这个解法是否存在重叠子问题呢?

假设输入的 i = 8, j = 7,二维状态的递归树如下图,显然出现了重叠子问题:

在这里插入图片描述

但稍加思考就可以知道,其实根本没必要画图,可以通过递归框架直接判断是否存在重叠子问题

具体操作就是直接删掉代码细节,抽象出该解法的递归框架:

int dp(int[][] grid, int i, int j) {dp(grid, i - 1, j), // #1dp(grid, i, j - 1)  // #2
}

可以看到 i, j 的值在不断减小,那么我问你一个问题:如果我想从状态 (i, j) 转移到 (i-1, j-1),有几种路径?

显然有两种路径,可以是 (i, j) -> #1 -> #2 或者 (i, j) -> #2 -> #1,不止一种,说明 (i-1, j-1) 会被多次计算,所以一定存在重叠子问题。

再举个稍微复杂的例子,后文 正则表达式问题 的暴力解代码:

bool dp(string& s, int i, string& p, int j) {int m = s.size(), n = p.size();if (j == n)  return i == m;if (i == m) {if ((n - j) % 2 == 1) return false;for (; j + 1 < n; j += 2) {if (p[j + 1] != '*') return false;}return true;}if (s[i] == p[j] || p[j] == '.') {if (j < n - 1 && p[j + 1] == '*') {return dp(s, i, p, j + 2)|| dp(s, i + 1, p, j);} else {return dp(s, i + 1, p, j + 1);}} else if (j < n - 1 && p[j + 1] == '*') {return dp(s, i, p, j + 2);}return false;
}

代码有些复杂对吧,如果画图的话有些麻烦,但我们不画图,直接忽略所有细节代码和条件分支,只抽象出递归框架:

bool dp(string& s, int i, string& p, int j) {dp(s, i, p, j + 2);     // #1dp(s, i + 1, p, j);     // #2dp(s, i + 1, p, j + 1); // #3
}

和上一题一样,这个解法的「状态」也是 (i, j) 的值,那么我继续问你问题:如果我想从状态 (i, j) 转移到 (i+2, j+2),有几种路径?

显然,至少有两条路径:(i, j) -> #1 -> #2 -> #2(i, j) -> #3 -> #3,这就说明这个解法存在巨量重叠子问题。

所以,不用画图就知道这个解法也存在重叠子问题,需要用备忘录技巧去优化。

注:重叠子问题:最笨的方法是脑补一个递归树,看有没有重叠子问题;进一步可以通过递归框架判断是否有子问题,有子问题就可以考虑使用备忘录技巧去优化;

三、dp 数组的大小设置

比如说后文 编辑距离问题,我首先讲的是自顶向下的递归解法,实现了这样一个 dp 函数:

int minDistance(String s1, String s2) {int m = s1.length(), n = s2.length();// 按照 dp 函数的定义,计算 s1 和 s2 的最小编辑距离return dp(s1, m - 1, s2, n - 1);
}// 定义:s1[0..i] 和 s2[0..j] 的最小编辑距离是 dp(s1, i, s2, j)
int dp(String s1, int i, String s2, int j) {// 处理 base caseif (i == -1) {return j + 1;}if (j == -1) {return i + 1;}// 进行状态转移if (s1.charAt(i) == s2.charAt(j)) {return dp(s1, i - 1, s2, j - 1);} else {return min(dp(s1, i, s2, j - 1) + 1,dp(s1, i - 1, s2, j) + 1,dp(s1, i - 1, s2, j - 1) + 1);}
}

然后改造成了自底向上的迭代解法:

int minDistance(String s1, String s2) {int m = s1.length(), n = s2.length();// 定义:s1[0..i] 和 s2[0..j] 的最小编辑距离是 dp[i+1][j+1]int[][] dp = new int[m + 1][n + 1];// 初始化 base case for (int i = 1; i <= m; i++)dp[i][0] = i;for (int j = 1; j <= n; j++)dp[0][j] = j;// 自底向上求解for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {// 进行状态转移if (s1.charAt(i-1) == s2.charAt(j-1)) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = min(dp[i - 1][j] + 1,dp[i][j - 1] + 1,dp[i - 1][j - 1] + 1);}}}// 按照 dp 数组的定义,存储 s1 和 s2 的最小编辑距离return dp[m][n];
}

这两种解法思路是完全相同的,但就有读者提问,为什么迭代解法中的 dp 数组初始化大小要设置为 int[m+1][n+1]?为什么 s1[0..i]s2[0..j] 的最小编辑距离要存储在 dp[i+1][j+1] 中,有一位索引偏移?

能不能模仿 dp 函数的定义,把 dp 数组初始化为 int[m][n],然后让 s1[0..i]s2[0..j] 的最小编辑距离要存储在 dp[i][j] 中?

理论上,你怎么定义都可以,只要根据定义处理好 base case 就可以

你看 dp 函数的定义,dp(s1, i, s2, j) 计算 s1[0..i]s2[0..j] 的编辑距离,那么 i, j 等于 -1 时代表空串的 base case,所以函数开头处理了这两种特殊情况。

再看 dp 数组,你当然也可以定义 dp[i][j] 存储 s1[0..i]s2[0..j] 的编辑距离,但问题是 base case 怎么搞?索引怎么能是 -1 呢?

所以我们把 dp 数组初始化为 int[m+1][n+1],让索引整体偏移一位,把索引 0 留出来作为 base case 表示空串,然后定义 dp[i+1][j+1] 存储 s1[0..i]s2[0..j] 的编辑距离。

注:dp 数组大小到底如何定义,依据 base case 来定,比如编辑距离问题中,base case dp[0][0] 代表空串情况,因此 dp 数组需要设置为 dp[m+1][n+1],把索引 0 留出来表示 base case 空串,做题时候,可以考虑下空串之类的情况再考虑设置 dp 数组大小;

四、dp 数组的遍历方向

我相信读者做动态规问题时,肯定会对 dp 数组的遍历顺序有些头疼。我们拿二维 dp 数组来举例,有时候我们是正向遍历:

int[][] dp = new int[m][n];
for (int i = 0; i < m; i++)for (int j = 0; j < n; j++)// 计算 dp[i][j]

有时候我们反向遍历:

for (int i = m - 1; i >= 0; i--)for (int j = n - 1; j >= 0; j--)// 计算 dp[i][j]

有时候可能会斜向遍历:

// 斜着遍历数组
for (int l = 2; l <= n; l++) {for (int i = 0; i <= n - l; i++) {int j = l + i - 1;// 计算 dp[i][j]}
}

甚至更让人迷惑的是,有时候发现正向反向遍历都可以得到正确答案,比如我们在 团灭股票问题 中有的地方就正反皆可。

如果仔细观察的话可以发现其中的原因,你只要把住两点就行了:

1、遍历的过程中,所需的状态必须是已经计算出来的

2、遍历结束后,存储结果的那个位置必须已经被计算出来

注:

  1. 遍历开始时候,所需状态必须已经计算出来;

  2. 遍历结束时候,存储结果的位置必须已经计算出来;

下面来具体解释上面两个原则是什么意思。

比如编辑距离这个经典的问题,详解见后文 编辑距离详解,我们通过对 dp 数组的定义,确定了 base case 是 dp[..][0]dp[0][..],最终答案是 dp[m][n];而且我们通过状态转移方程知道 dp[i][j] 需要从 dp[i-1][j], dp[i][j-1], dp[i-1][j-1] 转移而来,如下图:

在这里插入图片描述

那么,参考刚才说的两条原则,你该怎么遍历 dp 数组?肯定是正向遍历:

for (int i = 1; i < m; i++)for (int j = 1; j < n; j++)// 通过 dp[i-1][j], dp[i][j - 1], dp[i-1][j-1]// 计算 dp[i][j]

因为,这样每一步迭代的左边、上边、左上边的位置都是 base case 或者之前计算过的,而且最终结束在我们想要的答案 dp[m][n]

再举一例,回文子序列问题,详见后文 子序列问题模板,我们通过过对 dp 数组的定义,确定了 base case 处在中间的对角线,dp[i][j] 需要从 dp[i+1][j], dp[i][j-1], dp[i+1][j-1] 转移而来,想要求的最终答案是 dp[0][n-1],如下图:

在这里插入图片描述

这种情况根据刚才的两个原则,就可以有两种正确的遍历方式:

在这里插入图片描述

要么从左至右斜着遍历,要么从下向上从左到右遍历,这样才能保证每次 dp[i][j] 的左边、下边、左下边已经计算完毕,得到正确结果。

现在,你应该理解了这两个原则,主要就是看 base case 和最终结果的存储位置,保证遍历过程中使用的数据都是计算完毕的就行,有时候确实存在多种方法可以得到正确答案,可根据个人口味自行选择。

注:dp 遍历方向的本质原则就是 以已知推未知,同时需要保证遍历结束时候,存储结果的位置必须已经计算出来;

五、参考文献

  1. 最优子结构原理和 dp 数组遍历方向

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/42017.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【STM32】高效开发工具CubeMonitor快速上手

工欲善其事必先利其器。拥有一个辅助测试工具&#xff0c;能极大提高开发项目的效率。STM32CubeMonitor系列工具能够实时读取和呈现其变量&#xff0c;从而在运行时帮助微调和诊断STM32应用&#xff0c;类似于一个简单的示波器。它是一款基于流程的图形化编程工具&#xff0c;类…

链表之第二回

欢迎来到我的&#xff1a;世界 该文章收入栏目&#xff1a;链表 希望作者的文章对你有所帮助&#xff0c;有不足的地方还请指正&#xff0c;大家一起学习交流 ! 目录 前言第一题&#xff1a;反转一个链表第二题&#xff1a;链表内指定区间反转第三题&#xff1a;判断一个链表…

opencv+ffmpeg+QOpenGLWidget开发的音视频播放器demo

前言 本篇文档的demo包含了 1.使用OpenCV对图像进行处理&#xff0c;对图像进行置灰&#xff0c;旋转&#xff0c;抠图&#xff0c;高斯模糊&#xff0c;中值滤波&#xff0c;部分区域清除置黑&#xff0c;背景移除&#xff0c;边缘检测等操作&#xff1b;2.单纯使用opencv播放…

一个案例:Vue2组件化开发组件从入门到入土

1. 环境搭建 1.1. 创建项目 npm install -g vue/clivue create vue_study_todolist1.2. 清空项目代码 清楚HelloWorld.Vue代码中的内容。 1.3. 启动空项目 1.4 项目目标 项目组件实现以下效果 2. 组件拆分代码 Vue是一个基于组件的框架&#xff0c;允许您将界面拆分成小的…

Golang使用MinIO

最近在使用Golang做了一个网盘项目&#xff08;学习&#xff09;&#xff0c;文件存储一直保存在本地&#xff08;各厂商提供的oss贵&#xff09;&#xff0c;所以就在思考怎么来处理这些文件&#xff0c;类似的方案很对hdfs、fastdfs&#xff0c;但这其中MinIO是最近几年比较火…

生信豆芽菜-差异基因富集分析的圈图

网址&#xff1a;http://www.sxdyc.com/visualsEnrichCirplot 1、数据准备 准备一个基因集的文件 2、选择富集分析的数据库&#xff0c;同时输入展示top几的条目&#xff0c;选择颜色&#xff0c;如果是GO的话选择三个颜色&#xff0c;如果是KEGG选择一个&#xff0c;如果是G…

神经网络论文研读-多模态方向-综述研读(上)

翻译以机翻为主 原文目录 前言 图1&#xff1a;LMU印章&#xff08;左&#xff09;风格转移到梵高的向日葵绘画&#xff08;中&#xff09;并与提示混合 - 梵高&#xff0c;向日葵 -通过CLIPVGAN&#xff08;右&#xff09;。在过去的几年中&#xff0c;自然语言处理&#xff…

无涯教程-Perl - tell函数

描述 此函数返回指定FILEHANDLE中读取指针的当前位置(以字节为单位)。如果省略FILEHANDLE,则它将返回上次访问的文件中的位置。 语法 以下是此函数的简单语法- tell FILEHANDLEtell返回值 此函数以字节为单位返回当前文件位置。 例 以下是显示其基本用法的示例代码,要检…

leetcode473. 火柴拼正方形(回溯算法-java)

火柴拼正方形 leetcode473 火柴拼正方形题目描述回溯算法 上期经典算法 leetcode473 火柴拼正方形 难度 - 中等 原题链接 - leetcode473 火柴拼正方形 题目描述 你将得到一个整数数组 matchsticks &#xff0c;其中 matchsticks[i] 是第 i 个火柴棒的长度。你要用 所有的火柴棍…

微服务—Eureka注册中心

eureka相当于是一个公司的管理人事HR,各部门之间如果有合作时&#xff0c;由HR进行人员的分配以及调度&#xff0c;具体选哪个人&#xff0c;全凭HR的心情&#xff0c;如果你这个部门存在没有意义&#xff0c;直接把你这个部门撤销&#xff0c;全体人员裁掉&#xff0c;所以不想…

Android Studio瀑布流实现

效果&#xff1a; ImageDetail class package com.example.waterfallflow; import android.app.Activity; import android.content.Intent; import android.os.Bundle; import android.widget.ImageView;public class ImageDetail extends Activity{Overrideprotected void …

DNNGP、DeepGS 和 DLGWAS模型构成对比

一、DNNGP DNNGP 是基于深度卷积神经网络&#xff0c;这个结构包括一个输入层&#xff0c;三个卷积层&#xff0c;一个批标准化层&#xff0c;两个dropout层&#xff0c;一个平坦化层&#xff0c;一个 dense层。 dropout层&#xff1a;在神经网络中,dropout层是一个非常有效的正…

信息与通信工程面试准备——数学知识|正态分布|中心极限定理

目录 正态分布 正态分布的参数 正态分布的第一个参数是均值 正态分布的第二个参数是标准差SD 所有正态分布的共同特征 标准正态分布&#xff1a;正态分布的特例 中心极限定理 理解定义 示例# 1 示例# 2 知道样本均值总是正态分布的实际含义是什么&#xff1f; 正态分…

Scala 如何调试隐式转换--隐式转换代码的显示展示

方法1 在需要隐式转换的地方&#xff0c;把需要的参数显示的写出。 略方法2&#xff0c;查看编译代码 在terminal中 利用 scalac -Xprint:typer xxx.scala方法打印添加了隐式值的代码示例。 对于复杂的工程来说&#xff0c;直接跑到terminal执行 scalac -Xprint:typer xxx.…

JVM——类文件结构

文章目录 一 概述二 Class 文件结构总结2.1 魔数2.2 Class 文件版本2.3 常量池2.4 访问标志2.5 当前类索引,父类索引与接口索引集合2.6 字段表集合2.7 方法表集合2.8 属性表集合 一 概述 在 Java 中&#xff0c;JVM 可以理解的代码就叫做字节码&#xff08;即扩展名为 .class …

winform 封装unity web player 用户控件

环境&#xff1a; VS2015Unity 5.3.6f1 (64-bit) 目的&#xff1a; Unity官方提供的UnityWebPlayer控件在嵌入Winform时要求读取的.unity3d文件路径&#xff08;Src&#xff09;必须是绝对路径&#xff0c;如果移动代码到另一台电脑&#xff0c;需要重新修改src。于是考虑使…

elementUI 的上传组件<el-upload>,自定义上传按钮样式

方法一&#xff1a; 原理&#xff1a;调用<el-upload>组件的方法唤起选择文件事件 效果&#xff1a; 页面代码&#xff1a; 1、选择图片按钮 <div class"flex_row_spacebetween btn" click"chooseImg"><span class"el-icon-plus ic…

教育行业软文怎么写,媒介盒子无偿分享

随着产业升级和技术变革、信息的智能化、数字化发展&#xff0c;也为教育行业带来了新的增长点&#xff0c;在线教育课程类型丰富多元&#xff0c;新课程不断涌现。在激烈的市场竞争环境下&#xff0c;教育机构如何根据市场实行差异化战略并加强自身品牌建成为挑战。 如今&…

微服务-Ribbon(负载均衡)

负载均衡的面对多个相同的服务的时候&#xff0c;我们选择一定的策略去选择一个服务进行 负载均衡流程 Ribbon结构组成 负载均衡策略 RoundRobinRule&#xff1a;简单的轮询服务列表来选择服务器AvailabilityFilteringRule 对两种情况服务器进行忽略&#xff1a; 1.在默认情…

315官方点赞!多燕瘦或将成酵素选购唯一标准

食用酵素及其衍生产品&#xff0c;是近年来国内主流电商平台的主要增长类目之一。在全球范围内&#xff0c;酵素的流行由来已久&#xff0c;其中在日本、北美、欧洲等发达国家和地区尤为风靡。据不完全统计&#xff1a;欧洲酵素市场规模约占全球酵素市场份额的40%以上&#xff…