题目大意
给定N(N<=35)个数字,每个数字都<= 2^15. 其中一个或多个数字加和可以得到s,求出s的绝对值的最小值,并给出当s取绝对值最小值时,需要加和的数字的个数。
题目分析
需要枚举集合的所有情况,2^35,会超时。考虑使用折半枚举的方法,考虑前 N/2个数字构成的集合S1,在S1中进行所有情况枚举,复杂度为 2^17,并将所有可能的和sum以及构成和sum需要的数字个数count存放在map M中;然后在S2中进行所有情况的枚举,复杂度为2^17,对于每种情况的sum2,在M中查找 -sum2的位置,在该位置前后位置处进行查找,求和的最小值。
还需要考虑,当s只有S1中的数字构成或者s只有S2中的数字构成,或者s由S1和S2中的数字构成的三类情况。
总的时间复杂度为 O(2^17 + 2^17*log(2^17)) = O(2^22)
实现(c++)
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<cmath>
#include<iostream>
#include<map>
using namespace std;long long int ll_abs(long long int n){if (n >= 0)return n;return -n;
}
long long int an[40];map<long long int, int> sum_map;
int main2(){int n;while (scanf("%d", &n) && n){map<long long int, int>::iterator it;sum_map.clear();for (int i = 0; i < n; i++){scanf("%lld", &an[i]);}long long int min_sum = ll_abs(an[0]);int min_count = 1;int m = n / 2;for (int i = 0; m > 0 && i < (1 << m); i++){long long int sum = 0;int count = 0;int t = i;for (int k = 0; k < m; k++){if (t & 1){sum += an[k];count++;}t >>= 1;}if (count == 0)continue;if (sum_map.find(sum) != sum_map.end()){sum_map[sum] = min(sum_map[sum], count);}elsesum_map[sum] = count;if (ll_abs(sum) < min_sum){min_sum = ll_abs(sum);min_count = count;}else if (ll_abs(sum) == min_sum){min_count = min(min_count, count);}}m = n / 2 + n % 2;for (int i = 0; i < (1 << m); i++){long long int sum = 0;int count = 0;int t = i;for (int k = 0; k < m; k++){if (t & 1){sum += an[n / 2 + k];count++;}t >>= 1;}if (count == 0)continue;if (ll_abs(sum) < min_sum){min_sum = ll_abs(sum);min_count = count;}else if (ll_abs(sum) == min_sum){min_count = min(min_count, count);}it = sum_map.lower_bound(-sum);if (it != sum_map.end()){long long int s = sum + it->first;if (ll_abs(s) < min_sum){min_sum = ll_abs(s);min_count = it->second + count;}else if (ll_abs(s) == min_sum){min_count = min(min_count, it->second + count);}}if (it != sum_map.begin()){--it;long long int s = sum + it->first;if (ll_abs(s) < min_sum){min_sum = ll_abs(s);min_count = it->second + count;}else if (ll_abs(s) == min_sum){min_count = min(min_count, it->second + count);}}}printf("%lld %d\n", min_sum, min_count);}return 0;
}