问题导入
给你一个用户,如何找出这个用户的所有三度(其中包含一度、二度和三度)好友关系?
搜索算法
算法是作用于具体数据结构之上的,深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的。这是因为,图这种数据结构的表达能力很强,大部分涉及搜索的场景都可以抽象成“图”。
无向图的实现代码:每个顶点都是一条链表,类似hash表
public class Graph { // 无向图private int v; // 顶点的个数private LinkedList<Integer> adj[]; // 邻接表public Graph(int v) {this.v = v;adj = new LinkedList[v];for (int i=0; i<v; ++i) {adj[i] = new LinkedList<>();}}public void addEdge(int s, int t) { // 无向图一条边存两次adj[s].add(t);adj[t].add(s);}
}
BFS
广度优先搜索(Breadth-First-Search),我们平常都简称 BFS。直观地讲,它其实就是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索。
代码实现:
public void bfs(int s, int t) {if (s == t) return;boolean[] visited = new boolean[v];visited[s]=true;Queue<Integer> queue = new LinkedList<>();queue.add(s);int[] prev = new int[v];for (int i = 0; i < v; ++i) {prev[i] = -1;}while (queue.size() != 0) {int w = queue.poll();for (int i = 0; i < adj[w].size(); ++i) {int q = adj[w].get(i);if (!visited[q]) {prev[q] = w;if (q == t) {print(prev, s, t);return;}visited[q] = true;queue.add(q);}}}
}private void print(int[] prev, int s, int t) { // 递归打印s->t的路径if (prev[t] != -1 && t != s) {print(prev, s, prev[t]);}System.out.print(t + " ");
}
三个重要的辅助变量 visited、queue、prev:
- visited 是用来记录已经被访问的顶点,用来避免顶点被重复访问。如果顶点 q 被访问,那相应的 visited[q]会被设置为 true。
- queue 是一个队列,用来存储已经被访问、但相连的顶点还没有被访问的顶点。因为广度优先搜索是逐层访问的,也就是说,我们只有把第 k 层的顶点都访问完成之后,才能访问第 k+1 层的顶点。当我们访问到第 k 层的顶点的时候,我们需要把第 k 层的顶点记录下来,稍后才能通过第 k 层的顶点来找第 k+1 层的顶点。所以,我们用这个队列来实现记录的功能。
- prev 用来记录搜索路径。当我们从顶点 s 开始,广度优先搜索到顶点 t 后,prev 数组中存储的就是搜索的路径。不过,这个路径是反向存储的。prev[w]存储的是,顶点 w 是从哪个前驱顶点遍历过来的。比如,我们通过顶点 2 的邻接表访问到顶点 3,那 prev[3]就等于 2。为了正向打印出路径,递归地来打印。
分解图:
时间复杂度:O(E)。
空间复杂度:主要在几个辅助变量 visited 数组、queue 队列、prev 数组上。这三个存储空间的大小都不会超过顶点的个数,所以空间复杂度是 O(V)
DFS
深度优先搜索(Depth-First-Search),简称 DFS。最直观的例子就是“走迷宫”。
1、深度优先搜索用的是一种比较著名的算法思想,回溯思想。
2、深度优先搜索找出来的路径,并不是顶点 s 到顶点 t 的最短路径。
代码实现
boolean found = false; // 全局变量或者类成员变量public void dfs(int s, int t) {found = false;boolean[] visited = new boolean[v];int[] prev = new int[v];for (int i = 0; i < v; ++i) {prev[i] = -1;}recurDfs(s, t, visited, prev);print(prev, s, t);
}private void recurDfs(int w, int t, boolean[] visited, int[] prev) {if (found == true) return;visited[w] = true;if (w == t) {found = true;return;}for (int i = 0; i < adj[w].size(); ++i) {int q = adj[w].get(i);if (!visited[q]) {prev[q] = w;recurDfs(q, t, visited, prev);}}
}
空间复杂度:O(V)
时间复杂度:从面画的看出,每条边最多会被访问两次,一次是遍历,一次是回退。所以,图上的深度优先搜索算法时间复杂度是 O(E),E 表示边的个数
总结
社交网络可以用图来表示。这个问题就非常适合用图的广度优先搜索算法来解决,因为广度优先搜索是层层往外推进的。第一层是1度好友,第二层是2度好友,第3层是3度好友。改造一下广度优先搜索代码,用一个数组来记录每个顶点与起始顶点的距离,非常容易就可以找出三度好友关系。
1、广度优先搜索,通俗的理解就是,地毯式层层推进,从起始顶点开始,依次往外遍历。广度优先搜索需要借助队列来实现,遍历得到的路径就是,起始顶点到终止顶点的最短路径。
2、深度优先搜索用的是回溯思想,非常适合用递归实现。换种说法,深度优先搜索是借助栈来实现的。在执行效率方面,深度优先和广度优先搜索的时间复杂度都是 O(E),空间复杂度是 O(V)。