回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SS-KELM-Adaboost多变量回归预测;
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,SSA-KELM-AdaboostNN.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、RMSE多指标评价;

模型描述

SS-KELM-Adaboost是一种将SSA-KELM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。SSA-KELM-AdaBoost算法的基本思想是将SSA-KELM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个SSA-ELM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式:私信回复SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/41771.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SSH远程连接MacOS catalina并进行终端颜色配置

一、开关SSH服务 在虚拟机上安装了MacOS catalina,想要使用SSH远程进行连接,但是使用“系统偏好设置”/“共享”/“远程登录”开关进行打开,却一直是正在启动“远程登录”: 难道是catalina有BUG?不过还是有方法的&…

第07天 Static关键字作用及用法

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏:每天一个知识点 ✨特色专栏&#xff1a…

【前端|Javascript第5篇】全网最详细的JS的内置对象文章!

前言 在当今数字时代,前端技术正日益成为塑造用户体验的关键。我们在开发中需要用到很多js的内置对象的一些属性来帮助我们更快速的进行开发。或许你是刚踏入前端领域的小白,或者是希望深入了解内置对象的开发者,不论你的经验如何&#xff0c…

MATLAB中的代数环概念

在 Simulink 模型中,当存在信号环并且信号环中只存在直接馈通模块时,将出现代数环。直接馈通表示 Simulink 需要模块输入信号的值来计算当前时间步的输出。这种信号循环会在同一时间步中产生模块输出和输入的循环依存关系。这会导致一个需要在每个时间步…

【【verilog典型电路设计之流水线结构】】

verilog典型电路设计之流水线结构 下图是一个4位的乘法器结构,用verilog HDL 设计一个两级流水线加法器树4位乘法器 对于流水线结构 其实需要做的是在每级之间增加一个暂存的数据用来存储 我们得到的东西 我们一般来说会通过在每一级之间插入D触发器来保证数据的联…

OpenCV-Python中的图像处理-图像特征

OpenCV-Python中的图像处理-图像特征 图像特征Harris角点检测亚像素级精度的角点检测Shi-Tomasi角点检测SIFT(Scale-Invariant Feature Transfrom)SURF(Speeded-Up Robust Features)FAST算法BRIEF(Binary Robust Independent Elementary Features)算法ORB (Oriented FAST and R…

python编程中有哪些方便的调试方法

大家好,给大家分享一下一个有趣的事情,很多人还不知道这一点。下面详细解释一下。现在让我们来看看! 对于每个程序开发者来说,调试几乎是必备技能。常用Pycharm编辑器里的方法有Print大法、log大法,但缺少类似Matlab的…

怎么开通Tik Tok海外娱乐公会呢?

TikTok作为全球知名的社交媒体平台,吸引了数亿用户的关注和参与。许多公司和个人渴望通过开通TikTok直播公会进入这一领域,以展示自己的创造力和吸引更多粉丝。然而,成为TikTok直播公会并非易事,需要满足一定的门槛和申请找cmxyci…

【日常积累】Linux之init系统学习

init系统简介: Linux 操作系统的启动首先从 BIOS 开始,接下来进入 boot loader,由 bootloader 载入内核,进行内核初始化。内核初始化的最后一步就是启动 pid 为 1 的 init 进程,这个进程是系统的第一个进程,它负责产生…

银河麒麟服务器v10 sp1 .Net6.0 上传文件错误

上一篇:银河麒麟服务器v10 sp1 部署.Net6.0 http https_csdn_aspnet的博客-CSDN博客 .NET 6之前,在Linux服务器上安装 libgdiplus 即可解决,libgdiplus是System.Drawing.Common原生端跨平台实现的主要提供者,是开源mono项目。地址…

ubuntu 部署 ChatGLM-6B 完整流程 模型量化 Nvidia

ubuntu 部署 ChatGLM-6B 完整流程 模型量化 Nvidia 初环境与设备环境准备克隆模型代码部署 ChatGLM-6B完整代码 ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术&#x…

力扣 322. 零钱兑换

题目来源:https://leetcode.cn/problems/coin-change/description/ C题解(来源代码随想录):题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。动规五部曲分析如下: 确定dp数组以及下标的含义…

原码、反码、补码,进制转换,有符号数和无符号数转换

计算机底层存储数据时,存储的是数据对应的二进制数字。对于整型数据,其二进制表示形式有三种,分别是:原码、反码、补码,而实际存储的是整型数据的补码。 原码、反码以及补码都是有符号的,其中最高位存放符…

带你掌握Stable Diffution商业级玩法

课程介绍 学习地址 《Stable Diffusion商业级玩法》通过详细讲解AI绘画技巧、实操演示和个性化指导,帮助您从零基础成为绘画高手,帮助您有效推广产品或服务,提升市场份额。教您掌握稳定扩散绘画技巧,开启艺术创作新篇章。

Opencv 之ORB特征提取与匹配API简介及使用例程

Opencv 之ORB特征提取与匹配API简介及使用例程 ORB因其速度较快常被用于视觉SLAM中的位姿估计、视觉里程、图像处理中的特征提取与匹配及图像拼接等领域本文将详细给出使用例程及实现效果展示 1. API 简介 创建 static Ptr<ORB> cv::ORB::create (int nfeatures 500…

无涯教程-Perl - use函数

描述 此函数将MODULE导出的所有功能(或仅LIST引用的功能)导入当前包的名称空间。有效等效于- BEGIN { require "Module.pm"; Module->import(); }也用于在当前脚本上强加编译器指令(编译指示),尽管从本质上讲它们只是模块。 请注意,use语句在编译时进行判断。在…

springcloud3 hystrix实现服务熔断的案例配置3

一 hystrix的熔断原理 1.1 hystrix的熔断原理 在springcloud的框架里&#xff0c;熔断机制是通过hystrix实现&#xff0c;hystrix会监控服务之间的调用。当失败调用达到一定的阈值&#xff0c;默认是5s内失败20次&#xff0c;就会启用hystrix的熔断机制&#xff0c;使用命Hy…

【C++ 记忆站】缺省参数

文章目录 缺省参数的概念缺省参数的分类1、全缺省参数2、半缺省参数 缺省参数实际应用场景 缺省参数的概念 缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时&#xff0c;如果没有指定实参则采用该形参的缺省值&#xff0c;否则使用指定的实参 正常调用一…

Docker部署ES服务,canal全量同步的时候内存爆炸,ES/Canal Adapter自动关闭,CPU100%

文章目录 问题解决方案1. 对ES的限制2. 对Canal-Adapter的限制 问题 使用canal-adapter全量同步&#xff08;参考Canal Adapter1.1.5版本API操作服务&#xff0c;手动同步数据&#xff08;4&#xff09;&#xff09;的时候 小批量数据可以正常运行&#xff08;几千条&#xf…

Llama 2免费托管及API提供

Llama 2 是 Meta 最新的文本生成模型&#xff0c;目前其性能优于所有开源替代方案。 推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 1、强大的Llama 2 它击败了 Falcon-40B&#xff08;之前最好的开源基础模型&#xff09;&#xff0c;与 GPT-3.5 相当&#xff0c;仅低…