OpenCV-Python中的图像处理-图像特征

OpenCV-Python中的图像处理-图像特征

  • 图像特征
    • Harris角点检测
    • 亚像素级精度的角点检测
    • Shi-Tomasi角点检测
    • SIFT(Scale-Invariant Feature Transfrom)
    • SURF(Speeded-Up Robust Features)
    • FAST算法
    • BRIEF(Binary Robust Independent Elementary Features)算法
    • ORB (Oriented FAST and Rotated BRIEF)算法
  • 特征匹配
    • Brute-Force 蛮力匹配
      • 对 ORB 描述符进行蛮力匹配
      • 对 SIFT 描述符进行蛮力匹配和比值测试
    • FLANN 匹配

图像特征

  • 特征理解
  • 特征检测
  • 特征描述

Harris角点检测

  • cv2.cornerHarris(img, blockSize, ksize, k, borderType=…)
    • img:输入图像,数据类型为float32
    • blockSize:角点检测中要考虑的领域大小
    • ksize:Sobe求导中使用的窗口大小
    • k:Harris角点检测方程中的自由参数,取值参数为 [0.04,0.06]
    • borderType:边界类型
import numpy as np
import cv2
from matplotlib import pyplot as plt# img = cv2.imread('./resource/opencv/image/chessboard.png', cv2.IMREAD_COLOR)
img = cv2.imread('./resource/opencv/image/pattern.png', cv2.IMREAD_COLOR)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)gray = np.float32(gray)# 输入图像必须是float32,最后一个参数在0.04到0.05之间
dst = cv2.cornerHarris(gray, 2, 3, 0.05)
dst = cv2.dilate(dst, None)img[dst>0.01*dst.max()] = [0, 0, 255]cv2.imshow('dst', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

亚像素级精度的角点检测

  • cv2.cornerSubPix(img, corners, winSize, zeroZone, criteria)
    最大精度的角点检测,首先要找到 Harris角点,然后将角点的重心传给这个函数进行修正。
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/subpixel.png', cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)
dst = cv2.dilate(dst, None)
ret, dst = cv2.threshold(dst, 0.01*dst.max(), 255, 0)
dst = np.uint8(dst)ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)corners = cv2.cornerSubPix(gray, np.float32(centroids), (5,5), (-1, -1), criteria)res = np.hstack((centroids, corners))res = np.int0(res)
img[res[:,1],res[:,0]]=[0,0,255]
img[res[:,3],res[:,2]]=[0,255,0]cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Harris 角点用红色像素标出,绿色像素是修正后的角点。
在这里插入图片描述

Shi-Tomasi角点检测

  • cv2.goodFeatureToTrack()
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/shitomasi_block.jpg', cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)corners = cv2.goodFeaturesToTrack(gray, 25, 0.01, 10)corners = np.int0(corners)for i in corners:x,y = i.ravel()cv2.circle(img, (x,y), 3, 255, -1)plt.imshow(img)
plt.show()

在这里插入图片描述

SIFT(Scale-Invariant Feature Transfrom)

  • SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。

  • cv2.SIFT_create()

    • kp = sift.detect(img, None):查找特征点
    • kp, des = sift.compute(img, kp):计算特征点
    • kp, des = sift.detectAndCompute(img, None) :直接找到特征点并计算描述符
  • cv2.drawKeypoints(img, kp, out_img, flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS):画特征点

    • img : 输入图像
    • kp:图像特征点
    • out_img:输出图像
    • flags:
      cv2.DRAW_MATCHES_FLAGS_DEFAULT
      cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG
      cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS
      cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
import numpy as np
import cv2# 读取图片
# img = cv2.imread('./resource/opencv/image/home.jpg')
img = cv2.imread('./resource/opencv/image/AverageMaleFace.jpg')
key_points = img.copy()# 实例化SIFT算法
sift = cv2.SIFT_create()# 得到特征点
kp = sift.detect(img, None)
print(np.array(kp).shape)# 绘制特征点
cv2.drawKeypoints(img, kp, key_points, flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)# 图片展示
cv2.imshow("key points", key_points)
cv2.waitKey(0)
cv2.destroyAllWindows()# 保存图片
# cv2.imwrite("key_points.jpg", key_points)# 计算特征
kp, des = sift.compute(img, kp)# 调试输出
print(des.shape)
print(des[0])cv2.imshow('kp', key_points)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

SURF(Speeded-Up Robust Features)

  • 文章前面介绍了使用 SIFT 算法进行关键点检测和描述。但是这种算法的执行速度比较慢,人们需要速度更快的算法。在 2006 年Bay,H.,Tuytelaars,T. 和 Van Gool,L 共同提出了 SURF(加速稳健特征)算法。跟它的名字一样,这是个算法是加速版的 SIFT。
  • 与 SIFT 相同 OpenCV 也提供了 SURF 的相关函数。首先我们要初始化一个 SURF 对象,同时设置好可选参数: 64/128 维描述符, Upright/Normal 模式等。所有的细节都已经在文档中解释的很明白了。就像我们在SIFT 中一样,我们可以使用函数 SURF.detect(), SURF.compute() 等来进行关键点搀着和描述。

img = cv2.imread(‘fly.png’, 0)
surf = cv2.SURF(400)
kp, des = surf.detectAndCompute(img, None)
len(kp) # 699
print(surf.hessianThreshold)
surf.hessianThreshold = 50000
kp, des = surf.detectAndCompute(img,None)
print(len(kp)) # 47
不检测关键点的方向
print(surf.upright) #False
surf.upright = True

FAST算法

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/fly.jpg', cv2.IMREAD_GRAYSCALE)# fast = cv2.FastFeatureDetector_create(threshold=100, nonmaxSuppression=False, type=cv2.FAST_FEATURE_DETECTOR_TYPE_5_8)
fast = cv2.FastFeatureDetector_create(threshold=400)
kp = fast.detect(img, None)
img2 = cv2.drawKeypoints(img, kp, img.copy(), color=(0, 0, 255), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)cv2.imshow('fast', img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

BRIEF(Binary Robust Independent Elementary Features)算法

  • BRIEF(Binary Robust Independent Elementary Features)
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/fly.jpg', cv2.IMREAD_GRAYSCALE)# Initiate STAR detector
star = cv2.FeatureDetector_create("STAR")
# Initiate BRIEF extractor
brief = cv2.DescriptorExtractor_create("BRIEF")
# find the keypoints with STAR
kp = star.detect(img,None)
# compute the descriptors with BRIEF
kp, des = brief.compute(img, kp)
print(brief.getInt('bytes'))
print(des.shape)

ORB (Oriented FAST and Rotated BRIEF)算法

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/fly.jpg', cv2.IMREAD_GRAYSCALE)# ORB_create(nfeatures=..., scaleFactor=..., nlevels=..., edgeThreshold=..., firstLevel=..., WTA_K=..., scoreType=..., patchSize=..., fastThreshold=...)
orb = cv2.ORB_create()kp = orb.detect(img, None)kp, des = orb.compute(img, kp)img2 = cv2.drawKeypoints(img, kp, img.copy(), color=(255, 0, 0), flags=0)
plt.imshow(img2)
plt.show()

在这里插入图片描述

特征匹配

OpenCV 中的特征匹配

  • 蛮力( Brute-Force)匹配
  • FLANN 匹配

Brute-Force 蛮力匹配

对 ORB 描述符进行蛮力匹配

import numpy as np
import cv2
from matplotlib import pyplot as pltimg1 = cv2.imread('./resource/opencv/image/box.png', 0)
img2 = cv2.imread('./resource/opencv/image/box_in_scene.png', 0)orb = cv2.ORB_create()kp1, des1 = orb.detectAndCompute(img1, None)
kp2, des2 = orb.detectAndCompute(img2, None)bf = cv2.BFMatcher_create(cv2.NORM_HAMMING, crossCheck=True)matches = bf.match(des1, des2)# matches = bf:match(des1; des2) 返回值是一个 DMatch 对象列表。这个
# DMatch 对象具有下列属性:
# • DMatch.distance - 描述符之间的距离。越小越好。
# • DMatch.trainIdx - 目标图像中描述符的索引。
# • DMatch.queryIdx - 查询图像中描述符的索引。
# • DMatch.imgIdx - 目标图像的索引。# 距离排序
matches = sorted(matches, key = lambda x:x.distance)# 画出前30匹配
img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:30], None, flags=2)cv2.imshow('img', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

对 SIFT 描述符进行蛮力匹配和比值测试

现在我们使用 BFMatcher.knnMatch() 来获得 k 对最佳匹配。在本例中我们设置 k = 2,这样我们就可以使用 D.Lowe 文章中的比值测试了。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg1 = cv2.imread('./resource/opencv/image/box.png', 0)
img2 = cv2.imread('./resource/opencv/image/box_in_scene.png', 0)sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)bf = cv2.BFMatcher_create()
matches = bf.knnMatch(des1, des2, k=2)good = []
for m,n in matches:if m.distance < 0.75*n.distance:good.append([m])# drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor=..., singlePointColor=..., matchesMask=..., flags: int = ...)
img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[:100], None, flags=2)
plt.imshow(img3)
plt.show()

在这里插入图片描述

FLANN 匹配

FLANN 是快速最近邻搜索包(Fast_Library_for_Approximate_Nearest_Neighbors)的简称。它是一个对大数据集和高维特征进行最近邻搜索的算法的集合,而且这些算法都已经被优化过了。在面对大数据集时它的效果要好于 BFMatcher。我们来对第二个例子使用 FLANN 匹配看看它的效果。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg1 = cv2.imread('./resource/opencv/image/box.png', 0)
img2 = cv2.imread('./resource/opencv/image/box_in_scene.png', 0)sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)flann = cv2.FlannBasedMatcher_create()
matches = flann.knnMatch(des1, des2, k=2)matchesMask = [[0,0] for i in range(len(matches))]for i, (m, n) in enumerate(matches):if m.distance < 0.7*n.distance:matchesMask[i] = [1,0]draw_params = dict(matchColor = (0, 255, 0),singlePointColor = (255, 0, 0),matchesMask = matchesMask,flags = 0)img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, matches, None, **draw_params)
plt.imshow(img3)
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/41763.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python编程中有哪些方便的调试方法

大家好&#xff0c;给大家分享一下一个有趣的事情&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 对于每个程序开发者来说&#xff0c;调试几乎是必备技能。常用Pycharm编辑器里的方法有Print大法、log大法&#xff0c;但缺少类似Matlab的…

怎么开通Tik Tok海外娱乐公会呢?

TikTok作为全球知名的社交媒体平台&#xff0c;吸引了数亿用户的关注和参与。许多公司和个人渴望通过开通TikTok直播公会进入这一领域&#xff0c;以展示自己的创造力和吸引更多粉丝。然而&#xff0c;成为TikTok直播公会并非易事&#xff0c;需要满足一定的门槛和申请找cmxyci…

【日常积累】Linux之init系统学习

init系统简介: Linux 操作系统的启动首先从 BIOS 开始&#xff0c;接下来进入 boot loader&#xff0c;由 bootloader 载入内核&#xff0c;进行内核初始化。内核初始化的最后一步就是启动 pid 为 1 的 init 进程&#xff0c;这个进程是系统的第一个进程&#xff0c;它负责产生…

银河麒麟服务器v10 sp1 .Net6.0 上传文件错误

上一篇&#xff1a;银河麒麟服务器v10 sp1 部署.Net6.0 http https_csdn_aspnet的博客-CSDN博客 .NET 6之前&#xff0c;在Linux服务器上安装 libgdiplus 即可解决&#xff0c;libgdiplus是System.Drawing.Common原生端跨平台实现的主要提供者&#xff0c;是开源mono项目。地址…

ubuntu 部署 ChatGLM-6B 完整流程 模型量化 Nvidia

ubuntu 部署 ChatGLM-6B 完整流程 模型量化 Nvidia 初环境与设备环境准备克隆模型代码部署 ChatGLM-6B完整代码 ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型&#xff0c;基于 General Language Model (GLM) 架构&#xff0c;具有 62 亿参数。结合模型量化技术&#x…

力扣 322. 零钱兑换

题目来源&#xff1a;https://leetcode.cn/problems/coin-change/description/ C题解&#xff08;来源代码随想录&#xff09;&#xff1a;题目中说每种硬币的数量是无限的&#xff0c;可以看出是典型的完全背包问题。动规五部曲分析如下&#xff1a; 确定dp数组以及下标的含义…

原码、反码、补码,进制转换,有符号数和无符号数转换

计算机底层存储数据时&#xff0c;存储的是数据对应的二进制数字。对于整型数据&#xff0c;其二进制表示形式有三种&#xff0c;分别是&#xff1a;原码、反码、补码&#xff0c;而实际存储的是整型数据的补码。 原码、反码以及补码都是有符号的&#xff0c;其中最高位存放符…

带你掌握Stable Diffution商业级玩法

课程介绍 学习地址 《Stable Diffusion商业级玩法》通过详细讲解AI绘画技巧、实操演示和个性化指导&#xff0c;帮助您从零基础成为绘画高手&#xff0c;帮助您有效推广产品或服务&#xff0c;提升市场份额。教您掌握稳定扩散绘画技巧&#xff0c;开启艺术创作新篇章。

Opencv 之ORB特征提取与匹配API简介及使用例程

Opencv 之ORB特征提取与匹配API简介及使用例程 ORB因其速度较快常被用于视觉SLAM中的位姿估计、视觉里程、图像处理中的特征提取与匹配及图像拼接等领域本文将详细给出使用例程及实现效果展示 1. API 简介 创建 static Ptr<ORB> cv::ORB::create (int nfeatures 500…

无涯教程-Perl - use函数

描述 此函数将MODULE导出的所有功能(或仅LIST引用的功能)导入当前包的名称空间。有效等效于- BEGIN { require "Module.pm"; Module->import(); }也用于在当前脚本上强加编译器指令(编译指示),尽管从本质上讲它们只是模块。 请注意,use语句在编译时进行判断。在…

springcloud3 hystrix实现服务熔断的案例配置3

一 hystrix的熔断原理 1.1 hystrix的熔断原理 在springcloud的框架里&#xff0c;熔断机制是通过hystrix实现&#xff0c;hystrix会监控服务之间的调用。当失败调用达到一定的阈值&#xff0c;默认是5s内失败20次&#xff0c;就会启用hystrix的熔断机制&#xff0c;使用命Hy…

【C++ 记忆站】缺省参数

文章目录 缺省参数的概念缺省参数的分类1、全缺省参数2、半缺省参数 缺省参数实际应用场景 缺省参数的概念 缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时&#xff0c;如果没有指定实参则采用该形参的缺省值&#xff0c;否则使用指定的实参 正常调用一…

Docker部署ES服务,canal全量同步的时候内存爆炸,ES/Canal Adapter自动关闭,CPU100%

文章目录 问题解决方案1. 对ES的限制2. 对Canal-Adapter的限制 问题 使用canal-adapter全量同步&#xff08;参考Canal Adapter1.1.5版本API操作服务&#xff0c;手动同步数据&#xff08;4&#xff09;&#xff09;的时候 小批量数据可以正常运行&#xff08;几千条&#xf…

Llama 2免费托管及API提供

Llama 2 是 Meta 最新的文本生成模型&#xff0c;目前其性能优于所有开源替代方案。 推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 1、强大的Llama 2 它击败了 Falcon-40B&#xff08;之前最好的开源基础模型&#xff09;&#xff0c;与 GPT-3.5 相当&#xff0c;仅低…

【uni-app】 .sync修饰符与$emit(update:xxx)实现数据双向绑定

最近在看uni-app文档&#xff0c;看到.sync修饰符的时候&#xff0c;觉得很有必要记录一下 其实uni-app是一个基于Vue.js和微信小程序开发框架的跨平台开发工具 所以经常会听到这样的说法&#xff0c;只要你会vue&#xff0c;uni-app就不难上手 在看文档的过程中&#xff0c;发…

.netcore grpc客户端工厂及依赖注入使用

一、客户端工厂概述 gRPC 与 HttpClientFactory 的集成提供了一种创建 gRPC 客户端的集中方式。可以通过依赖包Grpc.Net.ClientFactory中的AddGrpcClient进行gRPC客户端依赖注入AddGrpcClient函数提供了许多配置项用于处理一些其他事项&#xff1b;例如AOP、重试策略等 二、案…

miniExcel 生成excel

一、nuget dotnet add package MiniExcel --version 1.31.2 二、新建表及数据 ExampleProducts 三、这里我用了Dapper.Query方法 读取excel public virtual async Task<IActionResult> Anonymous(){try{//using (var connection _dbContext.GetDbConnection())//{//…

linux中的ifconfig和ip addr

在linux操作系统中ifconfig和ip addr都是显示网卡配置信息的命令&#xff0c;好多人有疑惑它们有什么区别呢 区别1&#xff1a;对于linux发行的版本不一样 ip addr是对新发行版本的linux使用会比较多&#xff1b;而ifconfig是老版本遇到使用的会比较多。 区别2&#xff1a;显…

基于 KubeSphere 的应用容器化在智能网联汽车领域的实践

公司简介 某国家级智能网联汽车研究中心成立于 2018 年&#xff0c;是担当产业发展咨询与建议、共性技术研发中心、创新成果转化的国家级创新平台&#xff0c;旨在提高我国在智能网联汽车及相关产业在全球价值链中的地位。 目前着力建设基于大数据与云计算的智能汽车云端运营…

RestTemplate

RestTemplate介绍 RestTemplate是Spring提供的用于访问RESTful服务的客户端&#xff0c;RestTemplate提供了多种便捷访问远程Http服务的方法,能够大大提高客户端的编写效率。RestTemplate默认依赖JDK提供http连接的能力&#xff08;HttpURLConnection&#xff09;&#xff0c;…