分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测

分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测

目录

    • 分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

1
2
3
4
5

基本描述

1.MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测,运行环境Matlab2023b及以上;
2.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复** MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测**。
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]32个特征图reluLayer("Name", "relu_2")];                                        % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层bilstmLayer(best_hd, "Name", "bilstm", "OutputMode","last")              % BiLSTM层fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 1000'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/41196.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

seata 的部署和集成

文章目录 seata的部署和集成一、部署Seata的tc-server1.下载2.解压3.修改配置4.在nacos添加配置5.创建数据库表6.启动TC服务 二、微服务集成seata1.引入依赖2.修改配置文件 TODO三、TC服务的高可用和异地容灾1.模拟异地容灾的TC集群2.将事务组映射配置到nacos3.微服务读取nacos…

中期国际:MT4数据挖掘与分析方法:以数据为导向,制定有效的交易策略

在金融市场中,制定有效的交易策略是成功交易的关键。而要制定一份可靠的交易策略,数据挖掘与分析方法是不可或缺的工具。本文将介绍如何以数据为导向,利用MT4进行数据挖掘与分析,从而制定有效的交易策略。 首先,我们需…

操作系统搭建相关知识

文章目录 系统篇netstat命令systemctl命令Systemd系统资源分类(12类) 网络篇ifconfig命令操作系统配置动态IP脚本dhcp服务的安装与配置防火墙相关知识 操作系统常用配置文件 系统篇 netstat命令 netstat指路 systemctl命令 常用于重启系统的每个服务…

Jetpack Compose:探索声明式UI开发的未来

Jetpack Compose:探索声明式UI开发的未来 1. 引言 在移动应用开发领域,用户界面(UI)开发一直是开发过程中的关键挑战之一。传统的UI开发方式往往涉及大量繁琐的布局代码、手动管理状态和事件处理,不仅容易引发错误&a…

Google浏览器点击链接打开新标签页

由于新安装的谷歌浏览器点击链接时默认在当前窗口打开非常不方便,这里提供一下解决思路 1、打开浏览器输入任意内容,点击右上角的设置 2、在弹出的选项栏中点击See all Search settings 3、点击Other settings,将指定选项打开即可

C#__事件event的简单使用:工具人下楼问题

// 工具人类 namespace DownStair {delegate void DownStairDelegate(); // 定义了一个下楼委托class ToolMan{public string Name { get; set; } // 声明工具人的名字属性// public DownStairDelegate downStairDelegate null; // 初始化委托downStair为空委托// 解决方案pu…

gromacs教程练习1

gromacs能在win上运行,还是个开源的软件,这都很值得入手学习 记录下gromacs教程的练习情况: Lysozyme in water 水中的溶菌酶,嗯,估计就是把蛋白处理后放在显试溶剂里跑MD这个模拟。 1、文件的准备: 1、…

【STM32+ESP8266上云连载①】给ESP8266烧录AT固件

文章目录 一、给NodeMCU烧录固件1.1硬件准备1.2软件准备1.3AT固件下载1.4配置设置1.5开始烧录 二、给ESP8266-01S烧录固件2.1硬件准备2.2AT固件下载2.3连线2.4烧录配置 三、给ESP-12E/F/S单片烧录固件四、指令测试4.1HTTP测试4.2MQTT测试 我在使用ESP8266的时候遇到了一些问题&…

OCR的发明人是谁?

OCR的发明背景可以追溯到早期计算机科学和图像处理的研究。随着计算机技术的不断发展,人们开始探索如何将印刷体文字转换为机器可读的文本。 OCR(Optical Character Recognition,光学字符识别)的发明涉及多个人的贡献&#xff0c…

思腾云计算

近年来,游戏行业发展迅猛,市场容量不断扩大。从游戏产业发展来看,玩家对于游戏内容和体验的需求不断攀升。那如何在同质化的游戏市场,通过 AI 来提高游戏探索和交互的趣味度? 行业存在以下痛点: 1、游戏迭…

JVM中对象和GC Root之间的四种引用关系

1. 强引用 只有所有 GC Roots 对象都不通过【强引用】引用该对象&#xff0c;该对象才能被垃圾回收 由GC Root直接new出来的对象是强引用&#xff0c;只有当GC Root不再引用该对象的时候&#xff0c;才会被回收 例子&#xff1a; List<String> list new ArrayList<&…

vue2.0/vue3.0学习笔记——2022.08.16

vue2&#xff08;查漏补缺&#xff09; 一、vue基础 内置指令&#xff08;查漏补缺&#xff09; 1、v-text 更新元素的textContent 2、v-html 更新元素的innerHtml 3、v-cloak 防止闪现&#xff0c;与css配合: [v-cloak] {dispaly: none} 4、v-once 在初次动态渲染厚&#x…

数据链路层

数据链路层和网络层的对比 如果说网络层实现的是路由的功能&#xff0c;那么数据链路层就是实打实的实现具体的传输。 就像导航&#xff0c;网络层告诉我们下一步该去哪个主机&#xff0c;而数据链路层则是实现去下一个主机的方法。 网络层的IP地址告诉我们目的地在哪里&#x…

Spring 框架入门介绍及IoC的三种注入方式

目录 一、Spring 简介 1. 简介 2. spring 的核心模块 ⭐ 二、IoC 的概念 2.1 IoC 详解 2.2 IoC的好处 2.3 谈谈你对IoC的理解 三、IoC的三种注入方式 3.1 构造方法注入 3.2 setter方法注入 3.3 接口注入&#xff08;自动分配&#xff09; 3.4 spring上下文与tomcat整…

第三届OceanBase数据库大赛启动,升级为国家级竞赛

近日&#xff0c;第三届OceanBase数据库大赛启动报名。本届大赛进一步升级为全国大学生计算机系统能力大赛&#xff0c;由系统能力培养研究专家组发起&#xff0c;全国高等学校计算机教育研究会、系统能力培养研究项目发起高校主办&#xff0c;OceanBase承办&#xff0c;旨在培…

【Linux】Linux工具篇(yum、vim、gcc/g++、gdb、Makefile、git)

&#x1f680; 作者简介&#xff1a;一名在后端领域学习&#xff0c;并渴望能够学有所成的追梦人。 &#x1f681; 个人主页&#xff1a;不 良 &#x1f525; 系列专栏&#xff1a;&#x1f6f9;Linux &#x1f6f8;C &#x1f4d5; 学习格言&#xff1a;博观而约取&#xff…

图数据库_Neo4j学习cypher语言_使用CQL_构建明星关系图谱_导入明星数据_导入明星关系数据_创建明星关系---Neo4j图数据库工作笔记0009

首先找到明星数据 可以看到有一个sheet1,是,记录了所有的关系的数据 然后比如我们搜索一个撒贝宁,可以看到撒贝宁的数据 然后这个是构建的CQL语句 首先我们先去启动服务 neo4j console 然后我们再来看一下以前导入的,可以看到导入很简单, 就是上面有CQL 看一下节点的属性

搭载KaihongOS的工业平板、机器人、无人机等产品通过3.2版本兼容性测评,持续繁荣OpenHarmony生态

近日&#xff0c;搭载深圳开鸿数字产业发展有限公司&#xff08;简称“深开鸿”&#xff09;KaihongOS软件发行版的工业平板、机器人、无人机等商用产品均通过OpenAtom OpenHarmony&#xff08;以下简称“OpenHarmony”&#xff09;3.2 Release版本兼容性测评&#xff0c;获颁O…

ue5读取外部文件

准备环境 我的环境是win10&#xff0c;ue5.1.1&#xff0c;cpux86。 创建工程时&#xff0c;需要选择C模式 这样在Content Browser中会出现C Classes文件夹&#xff0c;下面有一个本项目命名的文件夹&#xff0c;鼠标右键可以看到New C Class选项。 新建类的时候选择父类Blue…

【Redis】Redis 的学习教程(五)之 SpringBoot 集成 Redis

在前几篇文章中&#xff0c;我们详细介绍了 Redis 的一些功能特性以及主流的 java 客户端 api 使用方法。 在当前流行的微服务以及分布式集群环境下&#xff0c;Redis 的使用场景可以说非常的广泛&#xff0c;能解决集群环境下系统中遇到的不少技术问题&#xff0c;在此列举几…