YOLOv5基础知识入门(7)— NMS(非极大值抑制)原理解析

前言:Hello大家好,我是小哥谈。NMS是指非极大值抑制(non maximum suppression),它是一种常用于物体检测任务的算法。在物体检测中,通常会有多个预测框(bounding box)被提议出来,并且这些框可能存在重叠或者重复的情况。NMS的目的就是通过抑制非极大值的方式,来选择出最具代表性的框。本节课就给大家介绍一下非极大值抑制的概念、原理及其算法实现。🌈 

 前期回顾:

           YOLOv5基础知识入门(1)— YOLO算法的发展历程

           YOLOv5基础知识入门(2)— YOLOv5核心基础知识讲解

           YOLOv5基础知识入门(3)— 目标检测相关知识点

           YOLOv5基础知识入门(4)— 神经网络的基本概念与原理 

           YOLOv5基础知识入门(5)— 损失函数(IoU、GIoU、DIoU、CIoU和EIoU)

           YOLOv5基础知识入门(6)— 激活函数(Mish、Sigmoid、Tanh、ReLU、Softmax、SiLU等)

           目录

🚀1.NMS概念

🚀2.目标检测中的NMS

🚀3.NMS算法实现

🚀4.YOLOv5中的NMS

🚀1.NMS概念

非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。🌳

举例:在人脸检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数,但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用到NMS来选取那些邻域里分数最高,并且抑制那些分数低的窗口。🍁


🚀2.目标检测中的NMS

目标检测一般分为两个过程:训练过程+检测(推理)过程。🌻

训练过程中,目标检测算法会根据给定的ground truth调整深度学习网络参数来拟合数据集的目标特征,训练完成后,神经网络的参数固定,因而能够直接对新的图像进行目标预测。 然而,在实际的目标预测中,一般的目标检测算法(R-CNN、YOLO等等)都会产生非常多的目标框,其中有很多重复的框定位到同一个目标,NMS作为目标检测的最后一步,用来去除这些重复的框,获得真正的目标框。🍄

两阶段目标检测算法中,以Faster-RCNN为例,有两处使用NMS,第一处是在训练的时候,利用 ProposalCreator 来生成 proposal 的时候,因为只需要一部分 proposal,所以利用NMS进行筛选。第二处使用是在预测的时候,当得到300个分类与坐标偏移结果的时候,需要对每个类别逐一进行非极大值抑制。那为什么对于每个类别不直接取置信度最高的那一个作为最终的预测呢?因为一张图中某个类别可能不止一个,例如一张图中有多个人,直接取最高置信度的只能预测其中的一个人,而通过NMS理想情况下可以使得每个人(每类中的每个个体)都会有且仅有一个 bounding box 框。🌺

一阶段目标检测算法中,以YOLOv5为例,输入一张640*640的图像,NMS之前会产生(80*80+40*40+20*20)*3=25200个目标框,这些框都有相应的分类置信度,当置信度满足正样本条件时(比如100个框,这些框密集的分布在目标周围),被送入NMS,NMS后会产生个数位个目标框(比如7个),如下图所示。👇

目标检测中应用NMS算法的主要目的是消除多余(交叉重复)的窗口,找到最佳物体检测位置。由于目标在图像中的形状和大小可能是各种各样的,所以为了能够较好地在图像中检测这些目标,通常会设计生成数量众多、长宽各异的候选边界框。但是对于一个目标检测任务来说,理想的情况是一个,所以目标只需输出一个最准确的边界框即可。💞


🚀3.NMS算法实现

为了从多个候选边界框中选择一个最佳边界框,通常会使用非极大值抑制(NMS)算法,这种算法用于“抑制”置信度低的边界框并只保留置信度最高的边界框。🌿

算法的实现过程为:

输入: 候选边界框集合B(每个候选框都有一个置信度)、IoU阈值N

输出: 最终的边界框集合D(初始为空集合)

1. 对集合B根据置信度进行降序排序;

2. 从集合B中选择第一个候选框(置信度最高),把它放入集合D中并从集合B中删除;

3. 遍历集合B中的每个候选框,计算它们与D集合中这个候选框的IoU值。如果IoU值大于阈值N, 则把它从集合B中删除;

4. 重复步骤2~3直到集合B为空。


🚀4.YOLOv5中的NMS

YOLOv5的通用工具类中有一段核心代码是处理后处理的NMS(非极大值抑制)部分。NMS是一种用于去除重叠较多的边界框的算法,以筛选出最准确的目标框。🐳

下面就对YOLOv5的NMS进行详解。🍎 🍏  🍒

NMS的主要思路是通过计算目标框之间的重叠度(即IOU,交并比),并选择IOU较低的目标框保留下来。YOLOv5的NMS代码使用了一个循环来遍历所有的预测框,并进行判断和筛选。🌴

首先,通过设定置信度阈值IOU阈值,将预测框中置信度低于阈值的框过滤掉,只保留置信度高的框。

接着,对剩下的框按照置信度进行降序排序,确保置信度高的框排在前面。

然后,从置信度最高的框开始,与其余框逐一计算IOU。如果某个框的IOU高于设定的IOU阈值,则将其删除,否则保留。

最后,重复上述步骤,直到遍历完所有的预测框,并得到最终筛选出来的目标框。

以上就是YOLOv5的NMS的主要讲解。这段代码的作用是在目标检测过程中,根据置信度和IOU阈值对预测框进行筛选,以得到准确的目标框。📚

名词解释:

置信度:置信度是介于0-1(或100%)之间的数字,它描述模型认为此预测边界框包含某类别目标的概率。

IoU(Intersection over Union,IoU):即两个边界框相交面积与相并面积的比值,边界框的准确度可以用IoU进行表示;一般约定,在检测中,IOU>0.5,则认为检测正确,一般阈值设为0.5。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/41138.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习深度学习——transformer(机器翻译的再实现)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——自注意力和位置编码(数学推导代码实现) 📚订阅专栏:机器…

【论文阅读】 Model Sparsity Can Simplify Machine Unlearning

Model Sparsity Can Simplify Machine Unlearning 背景主要内容Contribution Ⅰ:对Machine Unlearning的一个全面的理解Contribution Ⅱ:说明model sparsity对Machine Unlearning的好处Pruning方法的选择sparse-aware的unlearning framework Experiments…

JetBrains IDE远程开发功能可供GitHub用户使用

JetBrains与GitHub去年已达成合作,提供GitHub Codespaces 与 JetBrains Gateway 之间的集成。 GitHub Codespaces允许用户创建安全、可配置、专属的云端开发环境,此集成意味着您可以通过JetBrains Gateway使用在 GitHub Codespaces 中运行喜欢的IDE进行…

VScode搭建Opencv(C++开发环境)

VScode配置Opencv 一、 软件版本二 、下载软件2.1 MinGw下载2.2 Cmake下载2.3 Opencv下载 三、编译3.1 cmake-gui3.2 make3.3 install 四、 VScode配置4.1 launch.json4.2 c_cpp_properties.json4.3 tasks.json 五、测试 一、 软件版本 cmake :cmake-3.27.2-windows-x86_64 Mi…

JAVA基础知识(一)——Java语言描述、变量和运算符

TOC(Java语言描述、变量和运算符) 一、JAVA语言描述 1.1 java语言描述 JDK、JRE、jVM三者之间的关系,以及JDK、JRE包含的主要结构有哪些? JDKJre java的开发工具(javac.exe java.exe javadoc.exe) jre jvmjava的核心类库 为什…

【JavaEE基础学习打卡03】Java EE 平台有哪些内容?

目录 前言一、Java EE平台说明二、Java EE平台容器及组件1.平台容器2.平台组件 三、JavaEE平台API服务1.API服务概览2.平台API 总结 前言 📜 本系列教程适用于Java Web初学者、爱好者,小白白。我们的天赋并不高,可贵在努力,坚持不…

使用CLI添加磁盘到VM

登录 https://portal.azure.com/#home,点击右上角的控制台图标 ,打开CLI 在控制台中输入如下指令,在NetworkWatcherRG创建一个名字为TEST的虚拟机,使用的镜像是Win2019datacenter,username是aaa,password是1234567890A…

mysql的快速复习 和一些思考记录

数据库设计 第一范式:有主键,具有原子性,字段不可分割 数据库表中不能出现重复记录,每个字段是原子性的不能再分 关于第一范式,每一行必须唯一,也就是每个表必须有主键。 每一列不可再分!&#…

okhttp源码简单流程分析

拦截器详细解析可以看大佬简书 "https://www.jianshu.com/p/6fac73f7570f"和 “https://www.jianshu.com/p/3c740829475c” okhttp请求流程 1:OkHttpClient okHttpClient new OkHttpClient.Builder() 构建一个okhttpClient对象,传入你想传入的…

vector使用以及模拟实现

vector使用以及模拟实现 vector介绍vector常用接口1.构造2.迭代器3.容量4.增删查改5.练习 vector模拟实现1.迭代器失效2.反向迭代器3.完整代码 vector介绍 和我们原来讲的string不同&#xff0c;vector并不是类&#xff0c;是一个类模板&#xff0c;加<类型>实例化以后才…

主机防护的重要性和方式

01 主机防护的重要性 主机防护是网络安全的重要组成部分。在互联网时代&#xff0c;网络攻击成为了一种常见的威胁&#xff0c;而主机防护则是保护计算机系统免受网络攻击的重要手段。 主机防护可以防范各种网络攻击&#xff0c;如病毒、木马、黑客攻击等&#xff0c;从而保…

气象监测站:用科技感知气象变化

气象监测站是利用科学技术感知当地小气候变化情况的气象观测仪器&#xff0c;可用于农业、林业、养殖业、畜牧业、环境保护、工业等多个领域&#xff0c;提高对环境数据的利用率&#xff0c;促进产业效能不断提升。 气象监测站主要由气象传感器、数据传输系统、电源系统、支架…

Linux debian12解压和压缩.rar文件教程

一、Debian12安装rar命令 sudo apt install rar二、使用rar软件 1.解压文件 命令格式&#xff1a; rar x 文件名.rar实力测试&#xff1a; [rootdoudou tmp]# rar x test.rar2.压缩文件 test是一个文件夹 命令格式&#xff1a; rar a 文件名.rar 文件夹名实例测试&#x…

centos7 yum获取软件所有依赖包 创建本地yum源 yum离线安装软件

centos7 yum获取软件所有依赖包 创建本地yum源 离线安装软件 1、以安装docker 20.10为例2、centos7 yum获取docker 20.10 所有依赖包3、创建本地docker yum源4、yum使用本地docker源 离线安装docker 1、以安装docker 20.10为例 参考链接&#xff1a; 添加docker 清华软件源 y…

git环境超详细配置说明

一&#xff0c;简介 在git工具安装完成之后&#xff0c;需要设置一下常用的配置&#xff0c;如邮箱&#xff0c;缩写&#xff0c;以及git commit模板等等。本文就来详细介绍些各个配置如何操作&#xff0c;供参考。 二&#xff0c;配置步骤 2.1 查看当前git的配置 git conf…

使用 Apache Kafka 和 Go 将数据引入 OpenSearch

需要编写自定义集成层来满足数据管道中的特定要求&#xff1f;了解如何使用 Go 通过 Kafka 和 OpenSearch 实现此目的。 可扩展的数据摄取是OpenSearch等大规模分布式搜索和分析引擎的一个关键方面。构建实时数据摄取管道的方法之一是使用Apache Kafka。它是一个开源事件流平台…

米尔瑞萨RZ/G2L开发板-02 ffmpeg的使用和RTMP直播

最近不知道是不是熬夜太多&#xff0c;然后记忆力减退了&#xff1f; 因为板子回来以后我就迫不及待的试了一下板子&#xff0c;然后发现板子有SSH&#xff0c;但是并没有ffmpeg&#xff0c;最近总是在玩&#xff0c;然后今天说是把板子还原一下哇&#xff0c;然后把官方的固件…

前端单点登录SSO面试回答

JWT鉴权机制 1.JWT用于登录身份验证 2.用户登录成功后&#xff0c;后端通过JWT机制生成一个token&#xff0c;返回给客户端 3.客户端后续的每次请求都需要携带token&#xff0c;放在header的authorization中 4.后端从authorization中拿到token后&#xff0c;通过secretKey进…

Spring Boot中使用validator如何实现接口入参自动检验

文章目录 一、背景二、使用三、举例 一、背景 在项目开发过程中&#xff0c;经常会对一些字段进行校验&#xff0c;比如字段的非空校验、字段的长度校验等&#xff0c;如果在每个需要的地方写一堆if else 会让你的代码变的冗余笨重且相对不好维护&#xff0c;如何更加规范和优…

微服务-GateWay(网关)

所谓网关是什么意思&#xff1f; 相当于就是你们小区家的保安&#xff0c;进出小区都得获得保安的同意&#xff0c;守护你们小区的生命财产健康&#xff0c;网关也是如此&#xff0c;对每个请求都严格把关&#xff0c;将合法的或者是获得权限的请求进入服务器 网关的功能&…