数据结构之递归

  第一篇:数据结构之链表
  第二篇:数据结构之栈和队列
  第三篇:数据结构之二叉树
  第四篇:数据结构之排序
  第五篇:数据结构之字符串

 

  在这篇文章里,我们主要讨论和递归相关的话题。递归是数据结构中解决复杂问题时非常有效的一种思考方式,对于一个复杂的问题,我们可以从中抽取一个可以通过迭代方式解决的子问题,而子问题是一个容易解决的问题。在使用递归时,有两个问题需要注意:1)抽取递归体;2)确定递归边界条件以及处理方式。

  下面我们来看相关的题目。

  • 斐波那契数列
    我想这应该是最常见的递归的例子了,我们可以使用递归和非递归两种方式来实现它。
    首先来看非递归的方式:
    循环实现斐波那契数列
     1 public static int fibo2(int n)
     2 {
     3     if (n < 0) return -1;
     4     if (n == 0) return 0;
     5     
     6     int a = 0,b = 1,c;
     7     for (int i = 2; i <= n; i++)
     8     {
     9         c = a + b;
    10         a = b;
    11         b = c;
    12     }
    13     return b;
    14 }

    接着是使用递归方式:

    递归实现斐波那契数列
    1 public static int fibo1(int n)
    2 {
    3     if (n < 0) return -1;
    4     if (n == 0) return 0;
    5     if (n == 1) return 1;
    6     return fibo1(n - 1) + fibo1(n - 2);
    7 }
  • 对于一个N*N的矩阵,从左上角开始遍历,每次只能横着走或者竖着走,问一共有多少种方式可以到达矩阵的右下角。
    思路:可以把矩阵看成是N行N列的数据结构,初始时,对角线距离为N行、N列,当走一步之后,距离变为(N行、N-1列)或者是(N-1行、N列),直到距离变为(0行、0列)后,表明已经走到了右下角。
    遍历矩阵
     1 public static void printAllPath(int n)
     2 {
     3     int[][] matrix = Matrix.initMatrix(n, 50);
     4     Matrix.printMatrix(matrix);
     5     ArrayList<Integer> path = new ArrayList<Integer>();
     6     walk(matrix, n, 0, 0, path);
     7 }
     8 
     9 private static void walk(int[][] matrix, int n, int row, int column, ArrayList<Integer> path)
    10 {
    11     path.add(matrix[row][column]);
    12     if (row == n - 1 && column == n -1)
    13     {
    14         StringBuffer sb = new StringBuffer();
    15         for(int value : path) sb.append(value).append("->");
    16         System.out.println(sb.substring(0, sb.length() - 2));
    17     }
    18     if (row < n -1)
    19     {
    20         ArrayList<Integer> path1 = (ArrayList<Integer>)path.clone();
    21         walk(matrix, n, row + 1, column, path1);
    22     }
    23     if (column < n - 1)
    24     {
    25         ArrayList<Integer> path2 = (ArrayList<Integer>)path.clone();
    26         walk(matrix, n, row, column + 1, path2);
    27     }
    28 }
    执行结果(首先生成一个矩阵,然后列出各种可能方式)
    22    17    35    
    16    3    38    
    46    39    4    22->16->46->39->4
    22->16->3->39->4
    22->16->3->38->4
    22->17->3->39->4
    22->17->3->38->4
    22->17->35->38->4
  • 列出给定集合的所有子集
    思路:按照子集的定义,对于长度为N的集合来说,它的子集长度是从1到N-1,我们可以先假设求长度为M的子集,那应该怎么做呢?首先可以循环遍历集合,取出某一个元素,然后计算除去该元素的集合的长度为M-1的子集,然后递归,直到最后要找长度为1的子集为止。
    然后按照上述思路,将M从1开始一直设置到N-1,就可以得到所有的子集。
    需要注意的是,在递归的过程中,会产生重复的子集,需要删除这些子集。
    获取指定集合的全部子集
     1 public static void getAllSubSet(int n)
     2 {
     3     int[] arrValue = Matrix.initArray(n, 50);
     4     StringBuffer sb = new StringBuffer();
     5     for(int value : arrValue) sb.append(value).append("->");
     6     System.out.println(sb.substring(0, sb.length() - 2));
     7     
     8     ArrayList<Integer> list = new ArrayList<Integer>();
     9     ArrayList<ArrayList<Integer>> subsets = new ArrayList<ArrayList<Integer>>();
    10     for(int i = 1; i < n; i++)
    11     {
    12         subset(arrValue, i, i, list, subsets);
    13     }
    14 }
    15 
    16 private static void subset(int[] arrValue, int subSetLength, int left, ArrayList<Integer> list, ArrayList<ArrayList<Integer>> subsets)
    17 {
    18     if (left == 0 || list.size() == subSetLength)
    19     {
    20         boolean bExist = false;
    21         for(ArrayList<Integer> temp : subsets)
    22         {
    23             if (temp.size() == list.size())
    24             {
    25                 int j = 0;
    26                 for (int value : list)
    27                 {
    28                     if (!temp.contains(value))break;
    29                     j++;
    30                 }
    31                 if (j == subSetLength) 
    32                 {
    33                     bExist = true;
    34                     break;
    35                 }
    36             }
    37         }
    38         if (!bExist)
    39         {
    40             StringBuffer sb = new StringBuffer();
    41             for(int value1 : list) sb.append(value1).append("->");
    42             System.out.println(sb.substring(0, sb.length() - 2));
    43             subsets.add(list);
    44         }
    45         
    46     }
    47     for (int temp : arrValue)
    48     {
    49         if (list.contains(temp)) continue;
    50         ArrayList<Integer> listTemp = (ArrayList<Integer>)list.clone();
    51         listTemp.add(temp);
    52         subset(arrValue, subSetLength, left - 1, listTemp, subsets);
    53     }
    54 }

    执行结果(假设一个长度为4的集合)

    35->6->40->3335
    6
    40
    33
    35->6
    35->40
    35->33
    6->40
    6->33
    40->33
    35->6->40
    35->6->33
    35->40->33
    6->40->33
  • 求给定字符串的所有可能组合(假设字符串没有重复字符)
    思路:这个题目和上面的题目非常类似,只不过这个题目求的是对于长度为N的集合,我们要列出长度为N的“子集”。注意要去除重复组合。
    列出给定字符串的所有组合
     1 public static void perm(String value)
     2 {
     3     char[] arrChars = value.toCharArray();
     4     char[] arrAlready = new char[arrChars.length];
     5     ArrayList<char[]> all = new ArrayList<char[]>();
     6     permRecursive(arrChars, arrChars.length, arrAlready, all);
     7 }
     8 
     9 private static void permRecursive(char[] arrChars, int left, char[] arrAlready, ArrayList<char[]> all)
    10 {
    11     if (left == 0)
    12     {
    13         boolean bExist = false;
    14         for(char[] arrTemp : all)
    15         {
    16             int j=0;
    17             for (int i = 0; i < arrChars.length; i++)
    18             {
    19                 if (arrTemp[i] != arrAlready[i]) break;
    20                 j++;
    21             }
    22             if (arrChars.length == j)
    23             {
    24                 bExist = true;
    25                 break;
    26             }
    27         }
    28         if (!bExist)
    29         {
    30             all.add(arrAlready);
    31             for(char ch:arrAlready)System.out.print(ch);
    32             System.out.println();
    33         }
    34     }
    35     for(char ch : arrChars)
    36     {
    37         int i = 0;
    38         for(i = 0; i < arrChars.length - left; i++)
    39         {
    40             if (ch == arrAlready[i]) break;
    41         }
    42         if (i == arrChars.length - left) 
    43         {
    44             arrAlready[arrChars.length - left] = ch;
    45             char[] arrTemp = arrAlready.clone();
    46             permRecursive(arrChars, left - 1, arrTemp, all);
    47         }
    48     }
    49 }

    执行结果(以“abc”为例)

    abc
    acb
    bac
    bca
    cab
    cba
  • 给出N个'('和')',列出所有可能的合法组合
    思路:依然使用递归的套路,需要注意已输出的'('的数目不能小于')'的数目。
    输出所有可能的括号组合
     1 public static void printPar(int n)
     2 {
     3     char[] arrResult = new char[2*n];
     4     printParRecursive(n, n, arrResult, 0);
     5 }
     6 
     7 private static void printParRecursive(int lCount, int rCount, char[] arrResult, int totalCount)
     8 {
     9     if (lCount == 0 && rCount == 0)
    10     {
    11         System.out.println(arrResult);
    12     }
    13     if (lCount > 0)
    14     {
    15         arrResult[totalCount] = '(';
    16         printParRecursive(lCount - 1, rCount, arrResult, totalCount + 1);
    17     }
    18     if (rCount > lCount)
    19     {
    20         arrResult[totalCount] = ')';
    21         printParRecursive(lCount, rCount - 1, arrResult, totalCount + 1);
    22     }
    23 }

    执行结果(假设N=4)

    (((())))
    ((()()))
    ((())())
    ((()))()
    (()(()))
    (()()())
    (()())()
    (())(())
    (())()()
    ()((()))
    ()(()())
    ()(())()
    ()()(())
    ()()()()
  • 硬币组合,假设我们有25美分、15美分、5美分以及1美分的硬币,硬币的数目不限,对于指定的N美分,请列出所有可能的组合。
    思路:典型的递归,假设已经有25美分,那么需要找出N-25的所有组合,同样需要找出N-15、N-5、N-1的组合。
    求硬币组合
     1 public static void combine(int n)
     2 {
     3     ArrayList<Integer> list = new ArrayList<Integer>();
     4     ArrayList<ArrayList<Integer>> all = new ArrayList<ArrayList<Integer>>();
     5     combinRecursive(n, list, all);
     6 }
     7 
     8 private static void combinRecursive(int n, ArrayList<Integer> list, ArrayList<ArrayList<Integer>> all)
     9 {
    10     if (n == 0)
    11     {
    12         Collections.sort(list);
    13         boolean bExist = false;
    14         for(ArrayList<Integer> temp : all)
    15         {
    16             if (temp.size() == list.size())
    17             {
    18                 int j = 0;
    19                 for(int i = 0; i < temp.size(); i++)
    20                 {
    21                     if (temp.get(i) != list.get(i)) break;
    22                     j++;
    23                 }
    24                 if (j == temp.size())
    25                 {
    26                     bExist = true;
    27                     break;
    28                 }
    29             }
    30         }
    31         if (!bExist)
    32         {
    33             all.add(list);
    34             StringBuffer sb = new StringBuffer();
    35             for(int value1 : list) sb.append(value1).append("->");
    36             System.out.println(sb.substring(0, sb.length() - 2));
    37         }
    38     }
    39     
    40     if (n >= 25)
    41     {
    42         ArrayList<Integer> temp = (ArrayList<Integer>)list.clone();
    43         temp.add(25);
    44         combinRecursive(n - 25, temp, all);
    45     }
    46     if (n >= 10)
    47     {
    48         ArrayList<Integer> temp = (ArrayList<Integer>)list.clone();
    49         temp.add(10);
    50         combinRecursive(n - 10, temp, all);
    51     }
    52     if (n >= 5)
    53     {
    54         ArrayList<Integer> temp = (ArrayList<Integer>)list.clone();
    55         temp.add(5);
    56         combinRecursive(n - 5, temp, all);
    57     }
    58     if (n >= 1)
    59     {
    60         ArrayList<Integer> temp = (ArrayList<Integer>)list.clone();
    61         temp.add(1);
    62         combinRecursive(n - 1, temp, all);
    63     }
    64 }

    执行结果(假设N=25)

    25
    5->10->10
    1->1->1->1->1->10->10
    5->5->5->10
    1->1->1->1->1->5->5->10
    1->1->1->1->1->1->1->1->1->1->5->10
    1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->10
    5->5->5->5->5
    1->1->1->1->1->5->5->5->5
    1->1->1->1->1->1->1->1->1->1->5->5->5
    1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->5->5
    1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->5
    1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1->1




    最后,欢迎大家提出更多和递归相关的面试题目,我们可以一起讨论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/402815.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HBuilderX搭建微信小程序;HBuilderX开发uni-app微信小程序;uni-app开发微信小程序;使用uni-app搭建微信小程序;使用uni-ui模板搭建微信小程序步骤

1.选择模板 uni-ui 2.得到创建项目 3.获取APPid 在微信小程序电脑后台获取APPID 这个方法适用于自己申请的微信小程序&#xff08;自己用的小程序&#xff09; 打开微信小程序官网&#xff1a;https://mp.weixin.qq.com/ 并登陆 4.项目打包 打包后运行在微信小程序工具 才…

vh,vw单位你知道多少?

From: https://mp.weixin.qq.com/s/G7ZYCiO__4g2LjRuNl32Ew 响应式布局的单位我们第一时间会想到通过rem单位来实现适配&#xff0c;但是它还需要内嵌一段脚本去动态计算跟元素大小。 比如&#xff1a; (function (doc, win) { let docEl doc.documentElement let resizeEvt…

为什么说任何基于比较的算法将 5 个元素排序都需要 7 次?

排序算法对结果的唯一要求就是操作数满足全序关系&#xff1a; 如果 a≤b 并且 b≤c 那么 a≤c&#xff08;传递性&#xff09;。 对于 a 或 b&#xff0c;要不 a≤b&#xff0c;要不 b≤a&#xff08;完全性&#xff09;。这个问题可以用信息论来回答。 我从 1 到 5 中挑一个数…

iTerm2分屏时,如何使得新窗口的当前路径和前一个窗口一样?

From: https://segmentfault.com/q/1010000005355758 Preferences 里面设置 Working Directory 为 reuse previous sessions directory

全国80几所重点大学ftp资源库(经常逛逛可能有惊喜哦)很难收集的,知道其他的友友可以留言完善...

2019独角兽企业重金招聘Python工程师标准>>> 重庆交通大学外国语学院ftp \\202.202.240.93/ 密码:a 帐号:as 电子科技大学ftp    ftp://xsc. cuit. edu. cn/   大连理工大学    ftp://ftp. dlut. edu. cn   上海交通大学    ftp://mssite. sjtu. …

python发送包含html、图片、附件和链接的邮件

从我的126邮箱给我的QQ邮箱发送测试邮件 1.smtplib模块的使用 smtplib库用来发送邮件。需要用到的函数如下&#xff1a; 连接到SMTP服务器&#xff0c;参数为SMTP主机和端口&#xff1a; SMTP.connect([host[,port]]) 登录SMTP服务器&#xff0c;参数为邮箱用户名和密码&#x…

apiCloud中Frame框的操作,显示与隐藏Frame

Frame是一层一层的概念&#xff0c; 有的位于上层&#xff0c;有的位于下层。 1.加载菜单 2.加载页面层 3.首页拆分出内容层&#xff0c;这个时候内容层位于页面层的上方&#xff0c;当点击其他页面的时候&#xff0c;内容层遮挡住了他们 解决方案一 判断是否是首页&#xff0c…

迅雷Chrome插件引发的Uncaught ReferenceError: xl_chrome_menu is not defined JS报错

前几天发现我也有这问题 具体是点击某个button 会出这错。 倒是没啥影响不过用chrome控制台调试的时候比较烦 baidu了下 都说卸掉迅雷。。但是出于程序员的角度还是想解决掉BUG 我的方法是 找到对应的xl.js文件。、 找不到&#xff1f; 直接到chrome文件夹下搜索下xl.js就好了。…

学习《css世界》笔记之使用css实现凹凸效果

显示效果 HTML <span class"ao"></span> <span class"tu"></span>CSS .ao,.tu{display: inline-block;width: 0;font-size: 14px;line-height: 18px;margin: 35px;/* color: #fff; *//* 文字颜色 */}.ao:before,/* :before的主…

IO调度算法

IO调度算法的选择 一) I/O调度程序的总结 1) 当向设备写入数据块或是从设备读出数据块时,请求都被安置在一个队列中等待完成. 2) 每个块设备都有它自己的队列. 3) I/O调度程序负责维护这些队列的顺序,以更有效地利用介质.I/O调度程序将无序的I/O操作变为有序的I/O操作. 4) 内核…

ORA-01555 原因与解决

ORA-01555 原因与解决&#xff1a; 前面提到了ORA-01555错误&#xff0c;那么现在来看一下ORA-01555错误是怎样产生的。由于回滚段是循环使用的&#xff0c;当事务提交以后&#xff0c;该事务占用的回滚段事务会被标记为非活动&#xff0c;回滚段空间可以被覆盖重用。那么一个问…

使用css优雅解决文字两端对齐的方式之一

效果图 HTML <body><div>学校</div><div>班级</div><div>班主任</div><div>上课时间</div><div>名字</div></body>CSS div {margin: 10px 0;width: 70px;border: 1px solid brown;text-align: just…

学习《css世界》笔记之loading三点动画效果

动画实例 HTML <div>正在加载中<span>...</span></div>CSS span {display: inline-block;height: 1em;line-height: 1;text-align: left;vertical-align: -0.25em;/* 属性设置元素的垂直对齐方式。指定为负长度&#xff0c;可以使元素降低 */overfl…

关于今天

今天天气晴朗,晴空万里,万里无云,哈哈... 早上起来的时候,大雾,妖风四起. 然后早上起来居然就玩了一天的 冰封要塞. 说说玩了后的心得吧. 推塔游戏,额,这是CF第一次推出的这种模式.可以说和dota和英雄联盟有些相似.估计是某人从dota和英雄联盟这么火的情况下想出来的这招. 推塔…

学习《css世界》笔记之content自动添加开启闭合符号

实例 HTML <p lang"zh"><q>啦啦德玛西亚</q></p><p lang"en"><q>This book is very good!</q></p><p lang"no"><q>denne bog er fantasisk!</q></p><p class"…

maven+jetty项目在tomcat部署

步骤1&#xff1a;项目打包 clean install 步骤二&#xff1a;拷贝war 包到tomcat下 步骤三&#xff1a;修改server.xml文件的端口 步骤四&#xff1a;启动tomcat,注意jetty的项目是不需要带项目名的&#xff0c;Tomcat的项目需要加上项目名。 温馨提示&#xff0c;在启动tomca…

学习《css世界》笔记之多行文本实现垂直居中

效果图 HTML <div class"box"><div class"content">具有行高实现的多行文字垂直居中效果&#xff0c;需要属性vertical-align帮助</div> </div>CSS .box{width: 200px;line-height: 120px;background-color: #f0f0f0;}.content{…

学习《css世界》笔记之使用vertical-align数值实现文字和小图标对齐

效果图 HTML <p>请选择<i class"icon-arrow"></i></p> <p>请选择<i class"icon-arrow valing-1"></i></p> <p>请选择<i class"icon-arrow valing-2"></i></p>CSS .i…

MS SQL 能否修改实例名称

前几天研究了了一下修改数据库名称的方式后&#xff0c;今天突然冒出一个问题&#xff0c;MS SQL的命名实例是否也可以修改呢&#xff1f;例如下图&#xff0c;我在本机上安装了一个命名实例GSP&#xff0c;如果我想将其改为GSPS&#xff0c;能行吗&#xff1f; 如果可以&#…

MYSQL数据库时间字段INT,TIMESTAMP,DATETIME性能效率比较

from: http://www.piaoyi.org/database/MYSQL-INT-TIMESTAMP-DATETIME.html Author&#xff1a;飘易 Source&#xff1a;飘易 Categories&#xff1a;数据库 PostTime&#xff1a;2016-10-28 13:12:22 正 文&#xff1a; 在数据库设计的时候&#xff0c;我们经常会需要设计时…