Redis对象和五种常用数据类型

Redisobject 对象

对象分为键对象和值对象

键对象一般是string类型

值对象可以是string,list,set,zset,hash

q:redisobj的结构

typedef struct redisObject {  //类型  unsigned type:4;  //编码  unsigned encoding:4;  //指向底层实现数据结构的指针  void *ptr;  //引用计数,垃圾回收的时候使用int refcount;//最近被使用的时间,内存淘汰的时候用unsigned lru; 
} robj;

q:数据类型,编码和数据结构之间的对应 关系?

在这里插入图片描述

Redis对象和数据结构的关系
image.png

image.png

键总是一个字符串对象
而值可以是五种中的一种

type 命令 得到的结果就是值的类型

image.png
image.png

可以用object encoding命令查看编码

list数据类型的编码由linkedlist和ziplist编码合并成了quicklist编码

q: 通用数据类型命令

keys *  //查看当前库所有key    (匹配:keys *1)exists key //判断某个key是否存在,如果键存在则返回1,不存在则返回0:type key //查看你的key是什么类型del key  //删除指定的key数据,del是一个通用命令,无论值是什么数据结构类型,del命令都可以将其 删除,返回结果为成功删除键的个数,假设删除一个不存在的键,就会返回 0unlink key   //根据value选择非阻塞删除,仅将keys从keyspace元数据中删除,真正的删除会在后续异步操作。expire key 10   //10秒钟:为给定的key设置过期时间ttl key //查看还有多少秒过期,-1表示永不过期,-2表示已过期select number //命令切换数据库dbsize //查看当前数据库的key的数量flushdb //清空当前库flushall //通杀全部库

命令在执行前都会判断 参数是否是自己可以接收,否则会返回错误

数据类型

string 字符串

q: 特点

其value是字符串,不过根据字符串的格式不同,又可以分为3类:

  • string:普通字符串

  • int:整数类型,可以做自增、自减操作

  • float:浮点类型,可以做自增、自减操作

q: 适用场景?

String 的常见应用场景如下:

  • 常规数据(比如 session、token、序列化后的对象、图片的路径)的缓存;
  • 计数比如用户单位时间的请求数(简单限流可以用到)、页面单位时间的访问数;
  • 分布式锁(利用 SETNX key value 命令可以实现一个最简易的分布式锁);

q:常用命令?

 set  <key> <value> //添加键值对*NX:当数据库中key不存在时,可以将key-value添加数据库*XX:当数据库中key存在时,可以将key-value添加数据库,与NX参数互斥*EX:key的超时秒数*PX:key的超时毫秒数,与EX互斥get  <key> //查询对应键值append <key> <value> //将给定的<value> 追加到原值的末尾,返回长度strlen <key> //获得值的长度setnx <key> <value> //只有在 key 不存在时  设置 key 的值incr <key> //将 key 中储存的数字值增1  只能对数字值操作,如果为空,新增值为1decr <key> //将 key 中储存的数字值减1  只能对数字值操作,如果为空,新增值为-1incrby / decrby <key> <步长> //将 key 中储存的数字值增减。自定义步长。mset <key1><value1><key2><value2> ..... //同时设置一个或多个 key-value对 mget <key1><key2><key3> .....  //同时获取一个或多个 value msetnx <key1><value1><key2><value2> .....  //同时设置一个或多个 key-value 对,当且仅当所有给定 key 都不存在。 原子性,有一个失败则都失败getrange <key><起始位置><结束位置>  //得值的范围,类似java中的substring,前包,后包setrange <key><起始位置><value>  //<value> 覆写<key>所储存的字符串值,从<起始位置>开始(索引从0开始)。setex <key><过期时间><value>  //设置键值的同时,设置过期时间,单位秒。getset <key><value> //以新换旧,设置了新值同时获得旧值。

q:底层编码方式和数据结构?

image.png

  • 当存储的是long 数字的时候,使用int编码,prt直接存储数字

不包括浮点数

  • 当存储的字符串小于44个字节的时候,使用embstr编码,字符串和redisobject存储在一起
  • 当存储的字符串大于44个字节的时候,使用raw编码,prt存储的是sds的地址指针

set 集合

q: 特点

  • 无序

  • 元素不可重复

  • 查找快

  • 支持交集、并集、差集等功能

q: 适用场景?

应用场景:

  • 需要存放的数据不能重复的场景
    • 不可重复下单
    • 点赞
  • 需要获取多个数据源交集、并集和差集的场景
    • 共同好友(交集)、共同粉丝(交集)、共同关注(交集)、好友推荐(差集)、音乐推荐(差集)、订阅号推荐(差集+交集) 等场景。
  • 需要随机获取数据源中的元素的场景
    • 抽奖系统、随机点名等场景。
    • 相关命令:SPOP(随机获取集合中的元素并移除,适合不允许重复中奖的场景)、SRANDMEMBER(随机获取集合中的元素,适合允许重复中奖的场景)。

q:常用命令?

sadd <key><value1><value2> .....  //将一个或多个 member 元素加入到集合 key 中,已经存在的 member 元素将被忽略smembers <key>  //取出该集合的所有值。sismember <key><value> //判断集合<key>是否为含有该<value>值,有1,没有0scard<key> //返回该集合的元素个数。srem <key><value1><value2> .... //删除集合中的某个元素。spop <key> //随机从该集合中吐出一个值。srandmember <key><n> //随机从该集合中取出n个值。不会从集合中删除 。smove <source><destination>value //把集合中一个值从一个集合移动到另一个集合sinter <key1><key2> //返回两个集合的交集元素。sunion <key1><key2> //返回两个集合的并集元素。sdiff <key1><key2> //返回两个集合的差集元素(key1中的,不包含key2中的)

q:底层编码方式和数据结构?

  • 当存储的所有数据都是整数,元素数量不超过set-max-intset-entries时,Set会采用IntSet编码,以节省内存,底层数据结构是intset
  • 当存储的所有数据不都是整数,或元素数量超过set-max-intset-entries时,set采用hashtable编码,底层是Dict中的key用来存储元素,value统一为null。
    image.png

hash 哈希

q: 特点

hash也叫散列, 是一个键值对集合。

q: 适用场景?

hash特别适合用于存储对象。

image.png

q:常用命令?

hset <key><field><value> <field2><value2>  //<key>集合中的 <field>键赋值<value>hget <key1><field> //<key1>集合<field>取出 valuehmset <key1><field1><value1><field2><value2>... //批量设置hash的值,hmset被弃用,可以用hset做到hexists<key1><field> //查看哈希表 key 中,给定域 field 是否存在。hkeys <key> //列出该hash集合的所有fieldhvals <key> //列出该hash集合的所有valuehincrby <key><field><increment> //为哈希表 key 中的域 field 的值加上增量 1  -1hsetnx <key><field><value> //将哈希表 key 中的域 field 的值设置为 value ,当且仅当域 field 不存在 .

q:底层编码方式和数据结构?

  • Hash结构默认采用ZipList编码,用以节省内存。 ZipList中相邻的两个entry 分别保存field和value;底层数据结构式ziplist

  • 当数据量较大时,Hash结构会转为hashtable编码,底层数据结构是Dict,触发条件有两个:

    • ZipList中的元素数量超过了hash-max-ziplist-entries(默认512)
    • ZipList中的任意entry大小超过了hash-max-ziplist-value(默认64字节)

节点过多,或单个节点过大

image.png

zset/sorted set 有序集合

q: 特点

  • 无重复
  • 有序

每个成员都关联了一个评分(score),这个评分(score)被用来按照从最低分到最高分的方式排序集合中的成员。
集合的成员是唯一的,但是评分可以是重复了 。

q: 适用场景?

适合范围或者排序的应用场景:

  • 排行榜

q:常用命令?

zadd <key><score1><value1><score2><value2>//将一个或多个 member 元素及其 score 值加入到有序集 key 当中。zrange <key><start><stop> [WITHSCORES] //返回有序集 key 中,下标在<start><stop>之间的元素,带WITHSCORES,可以让分数一起和值返回到结果集。zrangebyscore key minmax [withscores] [limit offset count] //返回有序集 key 中,所有 score 值介于 min 和 max 之间(包括等于 min 或 max )的成员。有序集成员按 score 值递增(从小到大)次序排列。 zrevrangebyscore key maxmin [withscores] [limit offset count]        //同上,改为从大到小排列。 zincrby <key><increment><value>  // 为元素的score加上增量zrem <key><value> //删除该集合下,指定值的元素 zcount <key><min><max> //统计该集合,分数区间内的元素个数 zrank <key><value> //返回该值在集合中的排名,从0开始。

q:底层编码方式和数据结构?

  • 当满足下面条件时,采用ziplist编码,底层数据结构是ziplist
    • 元素数量小于zset_max_ziplist_entries,默认值128
    • 每个元素都小于zset_max_ziplist_value字节,默认值64

ziplist本身没有排序功能,而且没有键值对的概念,因此需要有zset通过编码实现:
- ZipList是连续内存,因此score和element是紧挨在一起的两个entry, element在前,score在后
- score越小越接近队首,score越大越接近队尾,按照score值升序排列
image.png

  • 否则采用zset编码,底层是zset数据结构,zset的数据结构又指向skiplist和dict

image.png

  • SkipList:可以排序,并且可以同时存储score和ele值(member)
  • Dict:可以键值存储,并且可以根据key找value,实现O(1)的查找

二者实际上共用对象,不会造成内存的浪费

list 列表

q: 特点

双向链表结构。既可以支持正向检索和也可以支持反向检索。

特征也与LinkedList类似:

  • 单键多值
  • 有序
  • 元素可以重复
  • 插入和删除快
  • 查询速度一般

q: 适用场景?

应用场景:

  • 常用来存储一个有序数据,例如:朋友圈点赞列表,评论列表等。
  • 可以用来做消息队列,只是功能过于简单且存在很多缺陷,不建议这样做。

q:常用命令?

lpush/rpush <key><value1><value2><value3>  //.... 从左边/右边插入一个或多个值。lpush是头插法lpop/rpop <key> //从左边/右边吐出一个值。值在键在,值光键亡。rpoplpush <key1><key2><key1> //列表右边吐出一个值,插到<key2>列表左边。lrange <key><start><stop> //按照索引下标获得元素(从左到右)lrange <key> 0 -1  //0左边第一个,-1右边第一个,(0 -1表示获取所有)lindex <key><index> //按照索引下标获得元素(从左到右)llen <key> //获得列表长度 linsert <key> before/after <value><newvalue> //<value>的前面、后面插入<newvalue>插入值lrem <key><n><value> //从左边删除n个value(从左到右)lset<key><index><value> //将列表key下标为index的值替换成value

q:底层编码方式和数据结构?

  • List的编码方式是quicklist,底层数据结构为快速链表quickList,quicklist的节点又指向了ziplist

Redis 3.2 之前,List 底层实现是 LinkedList 或者 ZipList。 Redis 3.2 之后,引入了 LinkedList 和 ZipList 的结合 QuickList,List 的底层实现变为 QuickList。

image.png

首先在列表元素较少的情况下会使用一块连续的内存存储,这个结构是ziplist,也即是压缩列表。(它将所有的元素紧挨着一起存储,分配的是一块连续的内存。)

当数据量比较多的时候才会改成quicklist。

因为普通的链表需要的附加指针空间太大,会比较浪费空间。比如这个列表里存的只是int类型的数据,结构上还需要两个额外的指针prev和next。

image.png

Redis将链表和ziplist结合起来组成了quicklist。也就是将多个ziplist使用双向指针串起来使用。这样既满足了快速的插入删除性能,又不会出现太大的空间冗余。

数据结构

sds 简单动态字符串

q:sds的结构

sds的结构

struct sdshdr { 
//记录buf数组中已使用字节的数量 
//等于SDS所保存字符串的长度 
int len; 
//记录buf数组中未使用字节的数量
int free;
//字节数组,用于保存字符串
char buf[];
};

image.png

q: sds和c字符串的区别

image.png

相同点:

  • 都是用char数组来记录字符,最后都有一个\0来代表字符串结束

sds最后也用\0代表结束,是为了重用c语言字符串的一些函数,例如printf打印,而不用重写所有的函数

不同点

肯定是c语言字符串存在一定的缺陷,redis才会重写,那么这些既是redis和c语言字符串的不同点,也是redis sds的优点

  • 常数级别获取字符串长度,sds获取字符串长度的时间复杂度是O(1),c语言是O(n),通过len的冗余存储来实现
  • 杜绝缓冲区溢出,字符串在拼接之前可以做内存检查,确保空间充足,否则进行扩充;不会像c语言一样造成内存溢出
  • 减少修改字符串时带来的内存重分配次数,预分配空间free,来减少内存重分配的次数,可以提升性能
  • 二进制安全,c语言字符串通过\0空字符来标志字符串结束,因此不能包含空字符;而sds通过len来表示字符串结束,可以包含空字符,可以存储图片等二进制信息,因此是二进制安全的

q: 容量扩充机制?

如图中所示,内部为当前字符串实际分配的空间capacity一般要高于实际字符串长度len。

  • 当字符串长度小于1M时,扩容都是加倍现有的空间
  • 如果超过1M,扩容时一次只会多扩1M的空间。需要注意的是字符串最大长度为512M。

intset 正数集合

q: intset的结构

typedef struct intset {  //编码方式  uint32_t encoding;  //集合包含的元素数量  uint32_t length;  //保存元素的数组  int8_t contents[];  
} intset;
  • 数组升序排列
  • 没有重复
    image.png

q: 如何升级?

当新元素很大的时候,集合要升级成更大的编码方式
升级整数集合并添加新元素共分为三步进行:
1)根据新元素的类型,扩展整数集合底层数组的空间大小,并为新元素分配空间。
2)将底层数组现有的所有元素都转换成与新元素相同的类型,并将类型转换后的元素放置到正确的位上,而且在放置元素的过程中,需要继续维持底层数组的有序性质不变。
3)将新元素添加到底层数组里面。

image.png
image.png

❑升级操作为整数集合带来了操作上的灵活性,并且尽可能地节约了内存。
❑整数集合只支持升级操作,不支持降级操作。

dictht 哈希表

typedef struct dictht {  //哈希表数组  dictEntry **table;  //哈希表大小  unsigned long size;  //哈希表大小掩码,用于计算索引值  //总是等于size-1  unsigned long sizemask;  //该哈希表已有节点的数量  unsigned long used;  
} dictht;

哈希表结点

typedef struct dictEntry {  //键  void *key;  //值  union{  void *val;  uint64_tu64;  int64_ts64;  } v;  //指向下个哈希表节点,形成链表  struct dictEntry *next;  
} dictEntry;

image.png

q:如何解决哈希冲突?

用拉链法的头插法解决哈希冲突
image.png

dict 字典

typedef struct dict {  //类型特定函数  dictType *type;  //私有数据  void *privdata;  //哈希表  dictht ht[2];  // rehash索引  //当rehash不在进行时,值为-1  in trehashidx; /* rehashing not in progress if rehashidx == -1 */  
} dict;

image.png

ht有两个,一般只使用第一个,第二个哈希表只在rehash的时候用

插入数据的时候,先计算哈希值,再计算索引值,再插入到指定位置

q : 如何rehash?

随着操作的不断执行,哈希表保存的键值对会逐渐地增多或者减少,为了让哈希表的负载因子(load factor)维持在一个合理的范围之内,当哈希表保存的键值对数量太多或者太少时,程序需要对哈希表的大小进行相应的扩展或者收缩。

扩展和收缩哈希表的工作可以通过执行rehash(重新散列)操作来完成,Redis对字典的哈希表执行rehash的步骤如下:

1)为字典的ht[1]哈希表分配空间,这个哈希表的空间大小取决于要执行的操作,以及ht[0]当前包含的键值对数量(也即是ht[0].used属性的值):
❑如果执行的是扩展操作,那么ht[1]的大小为第一个大于等于ht[0].used*2的2 n(2的n次方幂);
❑如果执行的是收缩操作,那么ht[1]的大小为第一个大于等于ht[0].used的2 n。

2)将保存在ht[0]中的所有键值对rehash到ht[1]上面:rehash指的是重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。

3)当ht[0]包含的所有键值对都迁移到了ht[1]之后(ht[0]变为空表),释放ht[0],将ht[1]设置为ht[0],并在ht[1]新创建一个空白哈希表,为下一次rehash做准备。

为ht[1]分配空间,复制ht[0]的数据到ht[1],释放ht[0],把ht[1]设为ht[0],ht[1]创建一个空哈希表
image.png
image.png
image.png
image.png

q:什么时候rehash

哈希表的扩展与收缩
哈希表的扩展与收缩当以下条件中的任意一个被满足时,程序会自动开始对哈希表执行扩展操作:
1)服务器目前没有在执行BGSAVE命令或者BGREWRITEAOF命令,并且哈希表的负载因子大于等于1。
2)服务器目前正在执行BGSAVE命令或者BGREWRITEAOF命令,并且哈希表的负载因子大于等于5。

为什么rehash是渐进式?

如果ht[0]的数据非常多,那么把数据全部转移到ht[1]将会非常耗费时间,因此这个过程是分多次,渐进式完成的
rehashidx记录了正在转移的索引下标,当转移完成,会置为-1

image.png
image.png
image.png
image.png
因为在进行渐进式rehash的过程中,字典会同时使用ht[0]和ht[1]两个哈希表,所以在渐进式rehash进行期间,字典的删除(delete)、查找(find)、更新(update)等操作会在两个哈希表上进行。例如,要在字典里面查找一个键的话,程序会先在ht[0]里面进行查找,如果没找到的话,就会继续到ht[1]里面进行查找,诸如此类。

另外,在渐进式rehash执行期间,新添加到字典的键值对一律会被保存到ht[1]里面,而ht[0]则不再进行任何添加操作,这一措施保证了ht[0]包含的键值对数量会只减不增,并随着rehash操作的执行而最终变成空表。

ziplist 压缩列表

q: ziplist的结构?

image.png
每个压缩列表节点可以保存一个字节数组或者一个整数值

image.png

q: ziplist过大的时候有什么缺点?

当ziplist变得很⼤的时候,它有如下几个缺点:

  • 每次插⼊或修改引发的realloc操作会有更⼤的概率造成内存拷贝,从而降低性能。
  • ⼀旦发生内存拷贝,内存拷贝的成本也相应增加,因为要拷贝更⼤的⼀块数据。
  • 当ziplist数据项过多的时候,在它上⾯查找指定的数据项就会性能变得很低,因为ziplist上的查找需要进行遍历。

skiplist 跳表

skiplist是多层级不同跨度的链表

q: skiplist的结构?

image.png

zsikpList

typedef struct zskiplist {  //表头节点和表尾节点  structz skiplistNode *header, *tail;  //表中节点的数量  unsigned long length;  //表中层数最大的节点的层数  int level;  
} zskiplist;

zskipListNode

typedef struct zskiplistNode {  //层  struct zskiplistLevel {  //前进指针  struct zskiplistNode *forward;  //跨度  unsigned int span;  } level[];  //后退指针  struct zskiplistNode *backward;  //分值  double score;  //成员对象  robj *obj;  
} zskiplistNode;

每个结点的成员对象是唯一的,但是分值可以相同,分值相同就按照成员对象由小到大排序,整个链表都是按照分值由小到大排序

image.png

q: skiplist如何遍历?

遍历:
首先遍历高层级跨度大的指针,如果过大,就遍历下一层级

zset

q:zset的结构?

typedef struct zset {  zskiplist *zsl;  dict *dict;  
} zset;

image.png

  • SkipList:可以排序,并且可以同时存储score和ele值(member)
  • Dict:可以键值存储,并且可以根据key找value,实现O(1)的查找

二者实际上共用对象,不会造成内存的浪费

quicklist 快表

q:quicklist的结构

quicklist 实际上是 zipList 和 linkedList 的混合体,它将 linkedList 按段切分,每一段使用 zipList 来紧凑存储,多个 zipList 之间使用双向指针串接起来。

image.png

typedef struct quicklist {  quicklistNode *head;  quicklistNode *tail;  unsigned long count;        /* total count of all entries in all ziplists */  unsigned long len;           
} quicklist;
typedef struct quicklistNode {  struct quicklistNode *prev; //上一个node节点  struct quicklistNode *next; //下一个node  unsigned char *zl;            //保存的数据 压缩前ziplist 压缩后压缩的数据  unsigned int sz;             /* ziplist size in bytes */  unsigned int count : 16;     /* count of items in ziplist */  } quicklistNode;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/40254.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

炒股票怎么加杠杆_融资融券账户怎么开通

炒股票作为一种投资方式&#xff0c;可以带来不错的回报。然而&#xff0c;对于那些希望以较小的资金获得更高收益的投资者来说&#xff0c;加杠杆炒股票是一个值得考虑的选择。本文将为您介绍加杠杆炒股票的意义&#xff0c;以及如何开通融资融券账户。 加杠杆炒股票的意义&a…

Centos8安装docker并配置Kali Linux图形化界面

鉴于目前网上没有完整的好用的docker安装kali桌面连接的教程&#xff0c;所以我想做一个。 准备工作 麻了&#xff0c;这服务器供应商提供的镜像是真的纯净&#xff0c;纯净到啥都没有。 问题一&#xff1a;Centos8源有问题 Error: Failed to download metadata for repo ap…

STM32 FLASH 读写数据

1. 《STM32 中文参考手册》&#xff0c;需要查看芯片数据手册&#xff0c;代码起始地址一般都是0x8000 0000&#xff0c;这是存放整个项目代码的起始地址 2. 编译信息查看代码大小&#xff0c;修改代码后第一次编译后会有这个提示信息 2.1 修改代码后编译&#xff0c;会有提示…

python3.73安装教程,python3.10安装教程

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;python3.73安装教程&#xff0c;python3.10安装教程&#xff0c;现在让我们一起来看看吧&#xff01; Python目前已支持所有主流操作系统&#xff0c;在Linux,Unix,Mac系统上自带Python环境&#xff0c;一般默认装的是P…

你敢信?代码小白30min就能搭建一套酷炫级的驾驶舱!

大量研究结果表明&#xff0c;人类通过图像获取信息的速度比通过阅读文字获取信息的速度要快很多。 近几年&#xff0c;数据可视化在企业中越发“流行”&#xff0c;将数字以可视化的形式展示&#xff0c;不仅清晰明了地展现企业真正的实力&#xff0c;也能让管理者快速了解细节…

Linux6.39 Kubernetes Pod控制器

文章目录 计算机系统5G云计算第三章 LINUX Kubernetes Pod控制器一、Pod控制器及其功用二.pod控制器有多种类型1.ReplicaSet2.Deployment3.DaemonSet4.StatefulSet5.Cronjob 三、Pod与控制器之间的关系1.Deployment2.SatefulSet1&#xff09;为什么要有headless2&#xff09;为…

gulimall-缓存-缓存使用

文章目录 前言一、本地缓存与分布式缓存1.1 使用缓存1.2 本地缓存1.3 本地模式在分布式下的问题1.4 分布式缓存 二、整合redis测试2.1 引入依赖2.2 配置信息2.3 测试 三、改造三级分类业务3.1 代码改造 四、高并发下缓存失效问题4.1 缓存穿透4.2 缓存雪崩4.3 缓存击穿 五、分布…

Talk | ICCV‘23 HumanMAC:简洁易拓展的人体动作预测新框架

​ 本期为TechBeat人工智能社区第522期线上Talk&#xff01; 北京时间8月16日(周三)20:00&#xff0c;清华大学博士生—陈凌灏的Talk已准时在TechBeat人工智能社区开播&#xff01; 他与大家分享的主题是: “HumanMAC-简洁易拓展的人体动作预测新框架”&#xff0c;介绍了人体动…

linux 学习————LNMP之分布式部署

目录 一、概述 二、LNMP环境部署 三、配置nginx 四、 配置php使nginx能够解析.php 五、配置mysql 六、配置discuz进行登录论坛访问测试 一、概述 LNMP代表 Linux、Nginx、MySQL、PHP&#xff0c;是一种常用的服务器架构。它由以下组件组成&#xff1a; Linux&#xff1a;作…

【js】js中apply()、bind()、call()用法

这三个方法的作用基本上相同&#xff0c;用法上有一些不同&#xff0c;下面先对比一下它们的用法&#xff1a; apply&#xff1a;调用一个具有给定 this 值的函数&#xff0c;以及以一个数组&#xff08;或一个类数组对象&#xff09;的形式提供的参数。 语法&#xff1a; ap…

Metasploitable2靶机漏洞复现

一、信息收集 nmap扫描靶机信息 二、弱口令 1.系统弱口令 在Kali Linux中使用telnet远程连接靶机 输入账号密码msfadmin即可登录 2.MySQL弱口令 使用mysql -h 靶机IP地址即可连接 3.PostgreSQL弱密码登录 输入psql -h 192.168.110.134 -U postgres 密码为postgres 输入\…

unity中导入自定义模型

unity中导入自定义模型 准备软件步骤1从SoildWorks中导出模型为STEP格式2将STEP格式文件导入到3DS Max中&#xff0c;再导出为FBX格式3将FBX格式导入至unity中 准备软件 需要SoildWorks、3DS Max和Unity 3D软件步骤 1从SoildWorks中导出模型为STEP格式 2将STEP格式文件导入到…

【数据结构】 List与顺序表及接口的实现

文章目录 什么是List常见接口介绍线性表顺序表顺序表接口的实现add在末尾新增元素在 pos 位置新增元素判定是否包含某个元素查找某个元素对应的位置获取 pos 位置的元素给 pos 位置的元素设为 value删除第一次出现的关键字key获取顺序表的长度清空顺序表 顺序表的优缺点优点&am…

Qt应用开发(基础篇)——滚屏区域基类 QAbstractScrollArea

一、前言 QAbstractScrollArea滚屏区域抽象类继承于QFrame&#xff0c;QFrame继承于QWidget&#xff0c;是QListview(列表浏览器)、QTableview(表格浏览器)、QTextEdit(文本编辑器)、QTextBrowser(文本浏览器)等所有需要滚屏区域部件的抽象基类。 框架类QFrame介绍 QAbstractSc…

java之juc二

JMM 请你谈谈对Volatile的理解 Volatile是jvm提供的轻量级的同步机制&#xff08;和synchronized差不多&#xff0c;但是没有synchronized那么强大&#xff09; 保证可见性不保证原子性禁止指令重排 什么是JMM JMM&#xff1a;java内存模型&#xff0c;不存在的东西&#…

一.RocketMQ概念

RocketMQ概念 1.概念2.应用场景3.MQ的优点和缺点4.常见MQ对比 1.概念 MQ(Message Queue)&#xff0c;是一种提供消息队列服务的中间件&#xff0c;也称为消息中间件&#xff0c;是一套提供了消息生产、存储、消费全过程API的软件系统。 RocketMQ是阿里巴巴2016年MQ中间件&…

华为云classroom赋能--Devstar使应用开发无需从零开始

华为云DevStar为开发者提供业界主流框架代码初始化能力&#xff0c;通过GUI、API、CLI等多种方式&#xff0c;将按模板生成框架代码的能力推送至用户桌面。同时基于华为云服务资源、成熟的DevOps开发工具链和面向多场景的众多开发模板&#xff0c;提供一站式创建代码仓、自动生…

【golang】数组和切片底层原理

数组类型的值&#xff08;以下简称数组&#xff09;的长度是固定的&#xff0c;而切片类型的值&#xff08;以下简称切片&#xff09;是可变长的。 数组的长度在声明它的时候就必须给定&#xff0c;并且之后不会再改变。可以说&#xff0c;数组的长度是其类型的一部分。比如&a…

深入探索JavaEE单体架构、微服务架构与云原生架构

课程链接&#xff1a; 链接: https://pan.baidu.com/s/1xSI1ofwYXfqOchfwszCZnA?pwd4s99 提取码: 4s99 复制这段内容后打开百度网盘手机App&#xff0c;操作更方便哦 --来自百度网盘超级会员v4的分享 课程介绍&#xff1a; &#x1f50d;【00】模块零&#xff1a;开营直播&a…

ARM-M0内核MCU,内置24bit ADC,采样率4KSPS,传感器、电子秤、体脂秤专用,国产IC

ARM-M0内核MCU 内置24bit ADC &#xff0c;采样率4KSPS flash 64KB&#xff0c;SRAM 32KB 适用于传感器&#xff0c;电子秤&#xff0c;体脂秤等等