最近开发的项目中需要编写Shell脚本对整个工程进行自动化编译,即在Shell脚本中使用make命令来进行编译,下面回顾一下Shell脚本中如何使用make命令)
在开发一个系统时,一般是将一个系统分成几个模块,这样做提高了系统的可维护性,但由于各个模块间不可避免存在关联,所以当一个模块改动后,其他模块也许会有所更新,当然对小系统来说,手工编译连接是没问题,但是如果是一个大系统,存在很多个模块,那么手工编译的方法就不适用了。为此,在Linux系统中,专门提供了一个make命令来自动维护目标文件,与手工编译和连接相比,make命令的优点在于他只更新修改过的文件(在Linux中,一个文件被创建或更新后有一个最后修改时间,make命令就是通过这个最后修改时间来判断此文件是否被修改),而对没修改的文件则置之不理,并且make命令不会漏掉一个需要更新的文件。
文件和文件间或模块或模块间有可能存在倚赖关系,make命令也是依据这种依赖关系来进行维护的,所以我们有必要了解什么是依赖关系;make命令当然不会自己知道这些依赖关系,而需要程序员将这些依赖关系写入一个叫makefile的文件中。
下面是详细解析:
一、Make命令
1、make命令基础概念
Make这个词,英语的意思是”制作”。Make命令直接用了这个意思,就是要做出某个文件。比如,要做出文件a.txt,就可以执行下面的命令。
- $ make a.txt
比如,假设文件a.txt 依赖于b.txt 和 c.txt ,是后面两个文件连接(cat命令)的产物。那么,make 需要知道下面的规则。
- a.txt: b.txt c.txt
- cat b.txt c.txt > a.txt
像这样的规则,都写在一个叫做Makefile的文件中,Make命令依赖这个文件进行构建。Makefile文件也可以写为makefile, 或者用命令行参数指定为其他文件名。
- $ make -f rules.txt # 或者 $ make --file=rules.txt
2、make命令使用方法
Make命本身可带有四种参数:标志、宏定义、描述文件名和目标文件名。其标准形式为:
Make [flags] [macro definitions] [targets]
Unix系统下标志位flags选项及其含义为:
-f file 指定file文件为描述文件,如果file参数为"-"符,那么描述文件指向标准输入。如果没有"-f"参数,则系统将默认当前目录下名为makefile或者名为Makefile的文件为描述文件。在Linux中, GNU make 工具在当前工作目录中按照GNUmakefile、makefile、Makefile的顺序搜索 makefile文件。
-i 忽略命令执行返回的出错信息。
-s 沉默模式,在执行之前不输出相应的命令行信息。
-r 禁止使用build-in规则。
-n 非执行模式,输出所有执行命令,但并不执行。
-t 更新目标文件。
-q make操作将根据目标文件是否已经更新返回"0"或非"0"的状态信息。
-p 输出所有宏定义和目标文件描述。
-d Debug模式,输出有关文件和检测时间的详细信息。
Linux下make标志位的常用选项与Unix系统中稍有不同,下面我们只列出了不同部分:
-c dir 在读取 makefile 之前改变到指定的目录dir。
-I dir 当包含其他 makefile文件时,利用该选项指定搜索目录。
-h help文挡,显示所有的make选项。
-w 在处理 makefile 之前和之后,都显示工作目录。
通过命令行参数中的target ,可指定make要编译的目标,并且允许同时定义编译多个目标,操作时按照从左向右的顺序依次编译target选项中指定的目标文件。如果命令行中没有指定目标,则系统默认target指向描述文件中第一个目标文件。
通常,makefile 中还定义有 clean 目标,可用来清除编译过程中的中间文件,例如:
clean:
rm -f *.o
运行 make clean 时,将执行 rm -f *.o 命令,最终删除所有编译过程中产生的所有中间文件。
隐含规则
在make 工具中包含有一些内置的或隐含的规则,这些规则定义了如何从不同的依赖文件建立特定类型的目标。Unix系统通常支持一种基于文件扩展名即文件名后缀的隐含规则。这种后缀规则定义了如何将一个具有特定文件名后缀的文件(例如.c文件),转换成为具有另一种文件名后缀的文件(例如.o文件):
.c:.o
$(CC) $(CFLAGS) $(CPPFLAGS) -c -o $@ $<
系统中默认的常用文件扩展名及其含义为:
.o 目标文件
.c C源文件
.f FORTRAN源文件
.s 汇编源文件
.y Yacc-C源语法
.l Lex源语法
在早期的Unix系统系统中还支持Yacc-C源语法和Lex源语法。在编译过程中,系统会首先在makefile文件中寻找与目标文件相关的.C文件,如果还有与之相依赖的.y和.l文件,则首先将其转换为.c文件后再编译生成相应的.o文件;如果没有与目标相关的.c文件而只有相关的.y文件,则系统将直接编译.y文件。
而GNU make 除了支持后缀规则外还支持另一种类型的隐含规则--模式规则。这种规则更加通用,因为可以利用模式规则定义更加复杂的依赖性规则。模式规则看起来非常类似于正则规则,但在目标名称的前面多了一个 % 号,同时可用来定义目标和依赖文件之间的关系,例如下面的模式规则定义了如何将任意一个 file.c 文件转换为 file.o 文件:
%.c:%.o
$(CC) $(CFLAGS) $(CPPFLAGS) -c -o $@ $<
二、Makefile文件
1、概述
Makefile文件由一系列规则(rules)构成。每条规则的形式如下。
<target> : <prerequisites> [tab] <commands>
上面第一行冒号前面的部分,叫做”目标”(target),冒号后面的部分叫做”前置条件”(prerequisites);第二行必须由一个tab键起首,后面跟着”命令”(commands)。
“目标”是必需的,不可省略;”前置条件”和”命令”都是可选的,但是两者之中必须至少存在一个。
每条规则就明确两件事:构建目标的前置条件是什么,以及如何构建。
2、 目标(target)
一个目标(target)就构成一条规则。目标通常是文件名,指明Make命令所要构建的对象,比如 a.txt 。目标可以是一个文件名,也可以是多个文件名,之间用空格分隔
除了文件名,目标还可以是某个操作的名字,这称为”伪目标”(phony target)。
- clean: rm *.o
上面代码的目标是clean,它不是文件名,而是一个操作的名字,属于”伪目标 “,作用是删除对象文件。
- $ make clean
但是,如果当前目录中,正好有一个文件叫做clean,那么这个命令不会执行。因为Make发现clean文件已经存在,就认为没有必要重新构建了,就不会执行指定的rm命令
为了避免这种情况,可以明确声明clean是”伪目标”,写法如下。
- .PHONY: clean
- clean: rm *.o temp
如果Make命令运行时没有指定目标,默认会执行Makefile文件的第一个目标。
$ make
上面代码执行Makefile文件的第一个目标。
例:执行多个目标
- .PHONY: cleanall cleanobj cleandiff
- cleanall : cleanobj cleandiff
- rm program
- cleanobj : rm *.o
- cleandiff : rm *.diff
三、shell 脚本各种执行方式(source ./*.sh, . ./*.sh, ./*.sh)的区别
结论一: ./*.sh的执行方式等价于sh ./*.sh或者bash ./*.sh,此三种执行脚本的方式都是重新启动一个子shell,在子shell中执行此脚本。
结论二: .source ./*.sh和 . ./*.sh的执行方式是等价的,即两种执行方式都是在当前shell进程中执行此脚本,而不是重新启动一个shell 而在子shell进程中执行此脚本。
验证依据:没有被export导出的变量(即非环境变量)是不能被子shell继承的
验证结果:
- [root@localhost ~]#name=dangxu //定义一般变量
- [root@localhost ~]# echo ${name}
- dangxu
- [root@localhost ~]# cat test.sh //验证脚本,实例化标题中的./*.sh
- #!/bin/sh
- echo ${name}
- [root@localhost ~]# ls -l test.sh //验证脚本可执行
- -rwxr-xr-x 1 root root 23 Feb 6 11:09 test.sh
- [root@localhost ~]# ./test.sh //以下三个命令证明了结论一
- [root@localhost ~]# sh ./test.sh
- [root@localhost ~]# bash ./test.sh
- [root@localhost ~]# . ./test.sh //以下两个命令证明了结论二
- dangxu
- [root@localhost ~]# source ./test.sh
- dangxu
- [root@localhost ~]#