Quivr 基于GPT和开源LLMs构建本地知识库 (更新篇)

一、前言

自从大模型被炒的越来越火之后,似乎国内涌现出很多希望基于大模型构建本地知识库的需求,大概在5月底的时候,当时Quivr发布了第一个0.0.1版本,第一个版本仅仅只是使用LangChain技术结合OpenAI的GPT模型实现了一个最基本的架子,功能并不够完善,但可以研究研究思路,当时 Quivr 通过借助于GPT的模型能力,选择Supabase构建向量数据库来实现个人知识库还算是一个不错的选择,自此一直有在关注 Quivr 的进展,基本上Quivr的更新频率还是比较高的,5月底写了一篇关于如何在本地基于Quivr构建知识库的文章之后,陆陆续续基本上都有一些朋友私聊询问有关Quivr构建的一些问题,也有一些对于Quivr未来功能规划方向的建议和期望,如果Quivr发展的比较成熟,对于个人或者中小企业或许也是一个低成本的选择。

随着这两个多月的更新,Quivr已经陆续发布了五十多个版本,不管是对原来功能的改进,代码的重构,还是扩展了很多新功能,都让Quivr看起来没有原来那么弱小了,基础的功能基本上也覆盖到了。感兴趣的可以尝试一下。

对于原来发布的文章和视频,有感兴趣的可以从下面的链接进去,因为Quivr一直在更新,在部署方面可能有些许变化,如果想部署最新版本的Quivr,可以直接看这篇最新的升级篇即可。

[文章]Quivr 基于Supabase构建本地知识库

[视频]Quivr 基于Supabase构建本地知识库

二、功能特性

2.1、大脑扩展能力

从单个账号只支持一个大脑,到现在可以支持多个大脑(具体数量可以配置,默认为5个),这样部署一套Quivr系统就可以创建多个大脑来对知识库进行分开维护,减少数据的检索范围和数据权限隔离。

用户可以根据偏好来自定义知识库,比如针对产品的智能客服、针对交付的Q&A助理、产品经理助手等等。

2.2、大脑权限控制

支持对单个知识库根据[浏览]、[编辑]、[所有者]三个角色来设置对应的访问权限,同时也支持通过链接和邮件的方式分享个人大脑给其他用户。

这样就可以很方便的实现个人私有知识库,或者是公司团队共享的知识库,而避免了以前每个用户都需要重复上传相同的知识,导致Key的浪费和知识的冗余。

2.3、LLM扩展能力

原来的版本只支持集成GPT和Claude模型,现在扩展了对本地开源模型的支持,如GPT4All,后续还将支持更多的开源模型。

2.4、开放API接口

Quivr采用前后端分离的独立架构,Quivr 使用 FastAPI 为后端提供 RESTful API,后端服务可以独立使用,不需要前端应用程序,我们的第三方应用也可以很方便的通过API接口集成Quivr大脑的我们自己的产品中

三、基础环境准备

3.1、先决条件

为了减少部署过程中不必要的麻烦,建议操作系统选择Ubuntu 22或更高版本,至于服务器只要能正常访问OpenAI的接口都可以,我在GCP/AWS/阿里云上都安装过,主要解决网络问题,选对服务器所在区域即可。

系统内存:如果只是个人用来部署玩一下,建议不少于1GB,2GB比较合适,如果想用于正式环境,则需根据具体的业务访问量配置。

系统硬盘:仅仅部署演示,建议不少于30GB。

接下来将演示在 Ubuntu 22 版本上快速部署Quivr来构建本地知识库系统。

3.2、安装Docker & Docker-Compose

首先安装 Docker 和 Docker Compose ,可以按照以下步骤进行操作:

1、更新系统软件包列表:

sudo apt update

2、安装Docker依赖的软件包:

sudo apt install apt-transport-https ca-certificates curl software-properties-common

3、添加Docker官方的GPG密钥:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

4、添加Docker的软件源:

echo "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

5、更新软件包列表:

sudo apt update

6、安装Docker Engine:

sudo apt install docker-ce docker-ce-cli containerd.io

7、验证Docker是否正确安装:

sudo docker run hello-world

8、安装Docker Compose:

sudo curl -L "https://github.com/docker/compose/releases/latest/download/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

9、添加执行权限:

sudo chmod +x /usr/local/bin/docker-compose

10、验证Docker Compose是否正确安装:

docker-compose --version

现在,您已经成功在Ubuntu上安装了Docker和Docker Compose。您可以使用这些命令来管理和运行容器化的应用程序。

错误:failed to update store for object type *libnetwork.endpointCnt: Key not found in store

Restart docker deamon would fix it.For ubuntu:sudo service docker restart

四、创建Supabase项目

Supabase是一个开源的Firebase替代品。使用 Postgres 数据库、身份验证、即时 API、边缘函数、实时订阅、存储和向量嵌入。一个免费账户可以创建2个项目。

1、注册账户

前往https://supabase.com/可以注册免费账户。

2、创建项目

 

3、配置网站URL和重定向地址

主要用于密码重置和电子邮件重定向跳转链接。地址为系统前端访问地址:http://ip:3000


五、部署Quivr应用

5.1、克隆存储库

git clone https://github.com/StanGirard/Quivr.git && cd Quivr
  • 可以使用 ls -alh 命令查看所有文件(包含隐藏文件)

一般Quivr每周都会在主分支更新新的内容,会存在一定未知的bug,建议选择一个最新的release稳定版本进行部署

https://sundun-rdcenter.feishu.cn/space/api/box/stream/download/asynccode/?code=MjU3ZWFmMzU1ODYxNWRlMjExNGE2OGU3Nzg0YTdjOTJfREkzaWFKa0JSRDdHVkNqOTdmekl2VVdWd1UxaURLR1pfVG9rZW46R21PRGI1N0Rsb1R2ZHh4WFJDdmNOQkdobnIwXzE2OTIxNTI0OTc6MTY5MjE1NjA5N19WNA

5.2、复制.XXXXX_env文件

新版本后端代码重构了,新的配置文件注意在backend/core/目录下面。

cp .backend_env.example backend/core/.env
cp .frontend_env.example frontend/.env

5.3、更新frontend/.env文件

NEXT_PUBLIC_ENV=local
NEXT_PUBLIC_BACKEND_URL=http://你的IP:5050/
NEXT_PUBLIC_SUPABASE_URL=your supabase project url
NEXT_PUBLIC_SUPABASE_ANON_KEY=your supabase api key
NEXT_PUBLIC_JUNE_API_KEY=your june api key

请注意,如果Quivr部署在本机电脑,backend_url直接使用localhost,如果Quivr部署在本地服务器或者云服务器则需要将后端URL修改为你服务器的实际的IP地址。(很多人会忽略这个配置!)

关于NEXT_PUBLIC_JUNE_API_KEY属性的配置说明:

Quivr 集成了 June Analytics 提供的API接口,在集成了June Analytics 之后,你只需要在系统中配置正确的June API密钥(即June key),然后June网站会自动开始收集和跟踪系统的数据。

一旦数据开始被收集,你可以登录到June Analytics的仪表板,并在其中查看和分析收集到的数据。June仪表板提供了一个用户友好的界面,用于浏览各种报告、图表和指标,以便你了解用户行为、事件触发和其他关键指标。

通过June仪表板,你可以探索不同的分析视图,如用户活动、事件追踪、转化率等。你可以根据时间范围、特定用户或自定义事件来过滤和细化数据,以获取更具体的见解和洞察。

如果是正式上线的站点,可以按需选择接入,默认可以不用考虑设置此参数,如果需要收集和分析网站的数据,可以去注册June账号,申请一个June Key

 5.4、更新backend/core/.env文件 

SUPABASE_URL=your supabase project url
SUPABASE_SERVICE_KEY=your supabase api key
PG_DATABASE_URL=notimplementedyet
OPENAI_API_KEY=your openai api key
ANTHROPIC_API_KEY=null
JWT_SECRET_KEY=your supabase jwt secret keyAUTHENTICATE=true
GOOGLE_APPLICATION_CREDENTIALS=<change-me>
GOOGLE_CLOUD_PROJECT=<change-me># 默认50M
MAX_BRAIN_SIZE=52428800. 
MAX_REQUESTS_NUMBER=2000
MAX_BRAIN_PER_USER=100# Private LLM Variables
PRIVATE=False
MODEL_PATH=./local_models/ggml-gpt4all-j-v1.3-groovy.bin# RESEND
RESEND_API_KEY=your resend api key
RESEND_EMAIL_ADDRESS=your resend email address

请注意,supabase_url在您的Supabase仪表板下的项目设置-> API中对应的Project URL,supabase_service_key在您的Supabase仪表板下的项目设置-> API中找到。使用“Project API keys”部分中找到的anon public键。您 JWT_SECRET_KEY可以在 Project Settings -> JWT Settings -> JWT Secret 下的 supabase 设置中找到。(注意ANTHROPIC_API_KEY可以不配置值,但key不能删除,否则构建会失败)

5.5、创建Supabase数据库和表

通过Web界面(SQL编辑器->“New Query”)在Supabase数据库上运行以下迁移脚本。

数据库脚本地址:

https://github.com/StanGirard/quivr/blob/main/scripts/tables.sql

-- Create users table
CREATE TABLE IF NOT EXISTS users(user_id UUID REFERENCES auth.users (id),email TEXT,date TEXT,requests_count INT,PRIMARY KEY (user_id, date)
);-- Create chats table
CREATE TABLE IF NOT EXISTS chats(chat_id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,user_id UUID REFERENCES auth.users (id),creation_time TIMESTAMP DEFAULT current_timestamp,history JSONB,chat_name TEXT
);-- Create vector extension
CREATE EXTENSION IF NOT EXISTS vector;-- Create vectors table
CREATE TABLE IF NOT EXISTS vectors (id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,content TEXT,metadata JSONB,embedding VECTOR(1536)
);-- Create function to match vectors
CREATE OR REPLACE FUNCTION match_vectors(query_embedding VECTOR(1536), match_count INT, p_brain_id UUID)
RETURNS TABLE(id UUID,brain_id UUID,content TEXT,metadata JSONB,embedding VECTOR(1536),similarity FLOAT
) LANGUAGE plpgsql AS $$
#variable_conflict use_column
BEGINRETURN QUERYSELECTvectors.id,brains_vectors.brain_id,vectors.content,vectors.metadata,vectors.embedding,1 - (vectors.embedding <=> query_embedding) AS similarityFROMvectorsINNER JOINbrains_vectors ON vectors.id = brains_vectors.vector_idWHERE brains_vectors.brain_id = p_brain_idORDER BYvectors.embedding <=> query_embeddingLIMIT match_count;
END;
$$;-- Create stats table
CREATE TABLE IF NOT EXISTS stats (time TIMESTAMP,chat BOOLEAN,embedding BOOLEAN,details TEXT,metadata JSONB,id INTEGER PRIMARY KEY GENERATED ALWAYS AS IDENTITY
);-- Create summaries table
CREATE TABLE IF NOT EXISTS summaries (id BIGSERIAL PRIMARY KEY,document_id UUID REFERENCES vectors(id),content TEXT,metadata JSONB,embedding VECTOR(1536)
);-- Create function to match summaries
CREATE OR REPLACE FUNCTION match_summaries(query_embedding VECTOR(1536), match_count INT, match_threshold FLOAT)
RETURNS TABLE(id BIGINT,document_id UUID,content TEXT,metadata JSONB,embedding VECTOR(1536),similarity FLOAT
) LANGUAGE plpgsql AS $$
#variable_conflict use_column
BEGINRETURN QUERYSELECTid,document_id,content,metadata,embedding,1 - (summaries.embedding <=> query_embedding) AS similarityFROMsummariesWHERE 1 - (summaries.embedding <=> query_embedding) > match_thresholdORDER BYsummaries.embedding <=> query_embeddingLIMIT match_count;
END;
$$;-- Create api_keys table
CREATE TABLE IF NOT EXISTS api_keys(key_id UUID DEFAULT gen_random_uuid() PRIMARY KEY,user_id UUID REFERENCES auth.users (id),api_key TEXT UNIQUE,creation_time TIMESTAMP DEFAULT current_timestamp,deleted_time TIMESTAMP,is_active BOOLEAN DEFAULT true
);--- Create prompts table
CREATE TABLE IF NOT EXISTS prompts (id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,title VARCHAR(255),content TEXT,status VARCHAR(255) DEFAULT 'private'
);--- Create brains table
CREATE TABLE IF NOT EXISTS brains (brain_id UUID DEFAULT gen_random_uuid() PRIMARY KEY,name TEXT NOT NULL,status TEXT,description TEXT,model TEXT,max_tokens INT,temperature FLOAT,openai_api_key TEXT,prompt_id UUID REFERENCES prompts(id)
);-- Create chat_history table
CREATE TABLE IF NOT EXISTS chat_history (message_id UUID DEFAULT uuid_generate_v4(),chat_id UUID REFERENCES chats(chat_id),user_message TEXT,assistant TEXT,message_time TIMESTAMP DEFAULT current_timestamp,PRIMARY KEY (chat_id, message_id),prompt_id UUID REFERENCES prompts(id),brain_id UUID REFERENCES brains(brain_id)
);-- Create brains X users table
CREATE TABLE IF NOT EXISTS brains_users (brain_id UUID,user_id UUID,rights VARCHAR(255),default_brain BOOLEAN DEFAULT false,PRIMARY KEY (brain_id, user_id),FOREIGN KEY (user_id) REFERENCES auth.users (id),FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);-- Create brains X vectors table
CREATE TABLE IF NOT EXISTS brains_vectors (brain_id UUID,vector_id UUID,file_sha1 TEXT,PRIMARY KEY (brain_id, vector_id),FOREIGN KEY (vector_id) REFERENCES vectors (id),FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);-- Create brains X vectors table
CREATE TABLE IF NOT EXISTS brain_subscription_invitations (brain_id UUID,email VARCHAR(255),rights VARCHAR(255),PRIMARY KEY (brain_id, email),FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);--- Create user_identity table
CREATE TABLE IF NOT EXISTS user_identity (user_id UUID PRIMARY KEY,openai_api_key VARCHAR(255)
);CREATE OR REPLACE FUNCTION public.get_user_email_by_user_id(user_id uuid)
RETURNS TABLE (email text)
SECURITY definer
AS $$
BEGINRETURN QUERY SELECT au.email::text FROM auth.users au WHERE au.id = user_id;
END;
$$ LANGUAGE plpgsql;CREATE OR REPLACE FUNCTION public.get_user_id_by_user_email(user_email text)
RETURNS TABLE (user_id uuid)
SECURITY DEFINER
AS $$
BEGINRETURN QUERY SELECT au.id::uuid FROM auth.users au WHERE au.email = user_email;
END;
$$ LANGUAGE plpgsql;CREATE TABLE IF NOT EXISTS migrations (name VARCHAR(255)  PRIMARY KEY,executed_at TIMESTAMPTZ DEFAULT current_timestamp
);INSERT INTO migrations (name) 
SELECT '20230809154300_add_prompt_id_brain_id_to_chat_history_table'
WHERE NOT EXISTS (SELECT 1 FROM migrations WHERE name = '20230809154300_add_prompt_id_brain_id_to_chat_history_table'
);

数据库脚本执行完成后,在Table编辑器中可以看到已经创建完成的表。

5.6、设置yarn的超时时间

在前端容器构建依赖阶段一般会比较慢,部分依赖可能由于网络原因长时间无法完成会导致yarn连接超时,旧版本可以在/frontend/Dockerfile文件中修改yarn install部分的脚本,增加网络超时参数,新版本已增加该参数可忽略此步骤。

RUN yarn install --network-timeout 1000000

5.7、构建并启动Quivr 

docker compose -f docker-compose.yml up --build -d

Quivr构建完成启动后如下图所示:

六、访问Quivr

部署完成后,直接访问 http://ip:3000,第一次部署可以通过邮箱注册账号

6.1、添加新大脑

Quivr 有一个“大脑”的概念。它们是封闭的信息体,可用于为大型语言模型 (LLM) 提供上下文,以回答有关特定主题的问题。

LLM接受过各种各样的数据培训,但要回答有关特定主题的问题或用于围绕特定主题进行推论,需要向他们提供该主题的上下文。Quivr 使用大脑作为提供上下文的直观方式。

当在 Quivr 中选择大脑时,LLM将仅获得该大脑的上下文。这允许用户为特定主题构建大脑,然后用它们来回答有关该主题的问题。未来 Quivr 将会有与其他用户共享大脑的功能。

在Quivr新版本中,可以支持创新多个知识库大脑,实现知识库的内容检索隔离,同时还支持对支持库进行授权,只允许授权用户才能访问,也可以通过分享链接的方式共享知识库。比几个月前的版本功能更加完善。

1)、要使用大脑,只需从 Quivr 界面右上角标题中的“使用大脑”图标中选择菜单即可。

2)、我们可以通过单击“创建大脑”按钮来创建一个新的大脑。系统将提示您输入大脑的名称。你也可以使用账户生成的默认大脑。

3)、要切换到不同的大脑,只需单击菜单中的大脑名称并选择您想要使用的大脑即可。

4)、如果你没有选择大脑,则你上传的任何文档都将添加到默认大脑中。

5)、在新建大脑知识库界面中,可以设置使用的模型和模型相关参数,同时也可以针对每个知识库大脑设置独有的Prompt以及所使用的OpenAI API Key,不设置则默认读取配置文件中配置的Key。

注意:如果在使用聊天功能时,需要从菜单中先选择一个大脑才能使用聊天功能。

6.2、共享知识库

在选择大脑界面,我们点击大脑后面的分享按钮,通过URL或者发邮件的方式分享或者邀请其它用户加入大脑,共享知识库。

 

Quivr 中通过集成 Resend API,用于通过电子邮件邀请来处理共享大脑。

在 /backend/core/.env 文件中引入了两个环境变量来配置发送邮件的功能:

  • RESENDAPIKEY:这是 Resend 为我们的应用程序提供的唯一 API 密钥。它使我们能够以安全的方式与 Resend 平台进行通信。

  • RESENDEMAILADDRESS:这是我们通过重新发送发送电子邮件时用作发件人地址的电子邮件地址。

从环境变量中获取 Resend API 密钥和电子邮件地址后,我们使用它通过 resend.Emails.send 方法发送电子邮件。

6.2、上传知识库

新建完知识库大脑后,就可以选择对应的知识库,上传文档构建向量数据了,支持文档、音频、视频和网页链接,所有文件最终都会抽取文件中的文本内容通过调用大模型的API构建向量数据。

 文件上传完成后,会有如下提示信息

6.3、查询知识库

知识库文档构建完成后,就可以对当前选择的知识库大脑进行内容检索了,这里我们以鲁迅先生在日本留学的老师藤野先生为例来测试一下Quivr是否正确识别了知识库文档的内容。 

在没学习专有知识之前,GPT模型不知道鲁迅先生在日本学医的老师是谁,一般会胡乱给出一个日本人的名字,而且多次询问,人命还不一致。 在上传完关于鲁迅先生写的《藤野先生》部分文章内容之后,我们再次询问发现可以成功检索正确的答案了。 

七、本地化LLM支持

Quivr 在0.0.46版本可以正式支持接入本地LLM大模型,目前只支持由 GPT4All 提供支持的私有 LLM 模型(其他开源模型即将推出),基本上与 PrivateGPT 项目提供的功能类似。意味着你的数据永远存储在本地。LLM 将下载到服务器并在本地对你的问题运行推理。

7.1、使用方法

  • /backend/core/.env 文件中将“private”属性设置为 True。您还可以在 .env 文件中设置其他模型参数。

  • GPT4All 模型下载地址:https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin

将下载的 GPT4All 模型放在 /backend/local_models 文件夹中。

GPT4All 是一个开源软件生态系统,允许任何人在日常硬件上训练和部署强大定制的大型语言模型 (LLM)。 Nomic AI 负责监督对开源生态系统的贡献,确保质量、安全性和可维护性。

GPT4All 软件生态系统与以下 Transformer 架构兼容:

  • Falcon

  • LLaMA (including OpenLLaMA)

  • MPT (including Replit)

  • GPT-J

  • Replit - 基于 Replit Inc. 的 Replit 架构

  • StarCoder - 基于 BigCode 的 StarCoder 架构

具体支持的模型型号列表可以从 GPT4All 的网站上查看详尽列表,或下载任何支持的模型。使用这些架构之一训练的任何模型都可以量化,并使用所有 GPT4All 绑定在本地运行,并在聊天客户端。您可以通过为 gpt4all 后端做出贡献来添加新变体。

7.2、未来计划

Quivr 计划在本地私有化 LLM 功能中添加更多模型。使用 Hugging Face 的本地嵌入模型来减少对 OpenAI API 的依赖。未来还将添加在前端和 API 中使用私有 LLM 模型的功能。目前的版本只有部署后端才能使用。

八、Quivr路线图

https://sundun-rdcenter.feishu.cn/space/api/box/stream/download/asynccode/?code=Y2VjODgzY2ViOTMyNzM3MzgyZTI4ODU2YWI5ZmFhZGJfY0FTZ1U1a09UVkR6Vld3QUdYSE0yVTNoamU2dXpWVjFfVG9rZW46Wk5SV2I3UlZ2b1YxSEp4RkJvdmNNc3ZwbmZjXzE2OTIxNTI0OTc6MTY5MjE1NjA5N19WNA

九、References

  • Quivr GitHub

https://github.com/StanGirard/quivr

  • Quivr FastAPI

https://api.quivr.app/docs

  • Resend API

https://resend.com/overview

  • June Analytics

https://analytics.june.so/

  • GPT4All WebSite

https://gpt4all.io/index.html

  • GPT4All Models

https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin

  • GPT4All Supported Models

https://raw.githubusercontent.com/nomic-ai/gpt4all/main/gpt4all-chat/metadata/models.json

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39957.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

升级STM32电机PID速度闭环编程:从F1到F4的移植技巧与实例解析

引言&#xff1a; 在嵌入式系统开发中&#xff0c;STM32系列微控制器广泛应用于各种应用领域。而对于直流有刷电机的控制&#xff0c;PID速度闭环是一种常用的控制方式。本文将以此为例&#xff0c;探讨如何从STM32F1系列移植到STM32F4系列&#xff0c;并详细介绍HAL库在不同型…

Python学习笔记_基础篇(十)_socket编程

本章内容 1、socket 2、IO多路复用 3、socketserver Socket socket起源于Unix&#xff0c;而Unix/Linux基本哲学之一就是“一切皆文件”&#xff0c;对于文件用【打开】【读写】【关闭】模式来操作。socket就是该模式的一个实现&#xff0c;socket即是一种特殊的文件&…

Linux安装Docker

一、Docker系统版本介绍 Docker 是一个开源的应用容器引擎&#xff0c;让开发者可以打包他们的应用以及依赖包到一个可移植的容器中&#xff0c;然后发布到任何流行的 Linux 或 Windows 操作系统的机器上&#xff0c;也可以实现虚拟化。 容器是完全使用沙箱机制&#xff0c;相…

诚迈科技荣膺小米“最佳供应商奖”

近日&#xff0c;诚迈科技受邀参加小米战略合作伙伴HBR总结会。诚迈科技以尽职尽责的合作态度、精益求精的交付质量荣膺小米公司颁发的最佳供应商奖&#xff0c;其性能测试团队荣获优秀团队奖。 诚迈科技与小米在手机终端方向一直保持着密切的合作关系&#xff0c;涉及系统框架…

【Java基础】Java对象的生命周期

【Java基础】Java对象的生命周期 一、概述 一个类通过编译器将一个Java文件编译为Class字节码文件&#xff0c;然后通过JVM中的解释器编译成不同操作系统的机器码。虽然操作系统不同&#xff0c;但是基于解释器的虚拟机是相同的。java类的生命周期就是指一个class文件加载到类…

python控制obs实现无缝切换场景!obs-websocket-py

前言 最近一直在研究孪生数字人wav2lip。目前成果可直接输入高清嘴型&#xff0c;2070显卡1分钟音频2.6分钟输出。在直播逻辑上可以做到1比1.3这样&#xff0c;所以现在开始研究直播。在逻辑上涉及到了无缝切换&#xff0c;看到csdn上有一篇文章还要vip解锁。。。那自己研究吧…

尚硅谷MySQL笔记 3-9

我不会记录的特别详细 大体框架 基本的Select语句运算符排序与分页多表查询单行函数聚合函数子查询 第三章 基本的SELECT语句 SQL分类 这个分类有很多种&#xff0c;大致了解下即可 DDL&#xff08;Data Definition Languages、数据定义语言&#xff09;&#xff0c;定义了…

项目难点:解决IOS调用起软键盘之后页面样式布局错乱问题

需求背景 &#xff1a; 开发了一个问卷系统重构项目&#xff0c;刚开始开发的为 PC 端&#xff0c;其中最头疼的一点无非就是 IE 浏览器的兼容适配性问题&#xff1b; 再之后项目经理要求开发移动端&#xff0c;简单的说就是写 H5 页面&#xff0c;到时候会内嵌在 App 应用、办…

multiple definition of......first defined here

一、背景 环境&#xff1a; 银河麒麟–ARM–GCC7.4.0 写了一个动态库&#xff0c;依赖opencv和freeImage等第三方库&#xff0c;用cmake进行编译。原本在centos6-x86-gcc7.5.0上面进行编译非常的顺利&#xff0c;但是拿到麒麟arm上面编译就提示了这个错误&#xff1a;这个报错…

Ruby软件外包开发语言特点

Ruby 是一种动态、开放源代码的编程语言&#xff0c;它注重简洁性和开发人员的幸福感。在许多方面都具有优点&#xff0c;但由于其动态类型和解释执行的特性&#xff0c;它可能不适合某些对性能和类型安全性要求较高的场景。下面和大家分享 Ruby 语言的一些主要特点以及适用的场…

【C语言】动态通讯录 -- 详解

⚪前言 前面详细介绍了静态版通讯录【C语言】静态通讯录 -- 详解_炫酷的伊莉娜的博客-CSDN博客&#xff0c;但是静态版通讯录的空间是无法被改变的&#xff0c;而且空间利用率也不高。为了解决静态通讯录这一缺点&#xff0c;这时就要有一个能够随着存入联系人数量的增加而增大…

Ansys Zemax | 手机镜头设计 - 第 1 部分:光学设计

本文是 3 篇系列文章的一部分&#xff0c;该系列文章将讨论智能手机镜头模组设计的挑战&#xff0c;从概念、设计到制造和结构变形的分析。本文是三部分系列的第一部分&#xff0c;将专注于OpticStudio中镜头模组的设计、分析和可制造性评估。&#xff08;联系我们获取文章附件…

安防监控视频云存储平台EasyNVR通道频繁离线的原因排查与解决

安防视频监控汇聚EasyNVR视频集中存储平台&#xff0c;是基于RTSP/Onvif协议的安防视频平台&#xff0c;可支持将接入的视频流进行全平台、全终端分发&#xff0c;分发的视频流包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等格式。为了满足用户的集成与二次开发需求&#xf…

企业计算机服务器遭到了locked勒索病毒攻击如何解决,勒索病毒解密

网络技术的不断发展&#xff0c;也为网络安全埋下了隐患&#xff0c;近期&#xff0c;我们收到很多企业的求助&#xff0c;企业的计算机服务器遭到了locked勒索病毒的攻击&#xff0c;导致企业的财务系统内的所有数据被加密无法读取&#xff0c;严重影响了企业的正常运行。最近…

如何通过观测云的RUM找到前端加载的瓶颈--可观测性入门篇

声明与保证 本文写作于2023年6月&#xff0c;性能优化的评价标准和优化方式仅适用于当前观测云控制台&#xff0c;当然随着产品迭代及技术更新&#xff0c;本文也会应要求适当更新。 创建、修订时间创建修改人版本2023/6/24观测云***v1.0.0 1.网站性能评价的发展史&#xff…

打开vim的语法高亮

在一个Ubuntu中自带的vim版本是8.2.4919&#xff0c;默认就是开始了语法高亮的&#xff0c;打开一个Java文件效果如下&#xff1a; 它不仅仅对Java文件有语法高亮&#xff0c;对很多的文件都有&#xff0c;比如vim的配置文件也有语法高亮&#xff0c;有语法高亮时读起来会容易…

DNNGP模型解读-early stopping 和 batch normalization的使用

一、考虑的因素&#xff08;仅代表个人观点&#xff09; 1.首先我们看到他的这篇文章所考虑的不同方面从而做出的不同改进&#xff0c;首先考虑到了对于基因组预测的深度学习方法的设计 &#xff0c;我们设计出来这个方法就是为了基因组预测而使用&#xff0c;这也是主要目的&…

排序算法-冒泡排序(C语言实现)

简介&#x1f600; 冒泡排序是一种简单但效率较低的排序算法。它重复地扫描待排序元素列表&#xff0c;比较相邻的两个元素&#xff0c;并将顺序错误的元素交换位置&#xff0c;直到整个列表排序完成。 实现&#x1f9d0; 以下内容为本人原创&#xff0c;经过自己整理得出&am…

WAVE SUMMIT2023六大分会场同步开启,飞桨+文心大模型加速区域产业智能化!

由深度学习技术及应用国家工程研究中心主办、百度飞桨和文心大模型承办的WAVE SUMMIT深度学习开发者大会2023将于8月16日重磅来袭&#xff01;届时上海、广州、深圳、成都、南昌和宁波六大分会场将同步开启&#xff01; 分会汇聚区域产业大咖、科研机构专家、知名学者和技术大…

【C++ 学习 ⑬】- 详解 list 容器

目录 一、list 容器的基本介绍 二、list 容器的成员函数 2.1 - 迭代器 2.2 - 修改操作 三、list 的模拟实现 3.1 - list.h 3.2 - 详解 list 容器的迭代器 3.2 - test.cpp 一、list 容器的基本介绍 list 容器以类模板 list<T>&#xff08;T 为存储元素的类型&…