聚合用于分析查询结果集的统计指标,我们以观看日志分析为例,介绍各种常用的ElasticSearch聚合操作。
目录:
- 查询用户观看视频数和观看时长
- 聚合分页器
- 查询视频uv
- 单个视频uv
- 批量查询视频uv
- Having查询
- 根据 count 进行过滤
- 根据其它指标进行过滤
首先展示一下我们要分析的文档结构:
{"video_id": 1289643545120062253, // 视频id"video_uid": 3931482202390368051, // 视频发布者id"uid": 47381776787453866, // 观看用户id"time": 1533891263224, // 时间发生时间"watch_duration": 30 // 观看时长
}
每个文档记录了一个观看事件,我们通过聚合分析用户的观看行为。
ElasticSearch引入了两个相关概念:
- 桶(Buckets): 满足特定条件的文档的集合
- 指标(Metrics): 桶中文档的统计值,如特定字段的平均值
查询用户观看视频数和观看时长
首先用sql语句描述这个查询:
SELECT uid, count(*) as view_count
FROM view_log
WHERE time >= #{since} AND time <= #{to}
GROUP BY uid;
ES 查询:
GET /view_log/_search
{"size" : 0,"query": {"range": {"time": {"gte": 0, // since"lte": 0 // to}}},"aggs": {"agg": { // agg为聚合的名称"terms": { // 聚合的条件为 uid 相同"field": "uid"}}}
}
response:
{"took": 10,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": 100000,"max_score": 0,"hits": []},"aggregations": {"agg": {"buckets": [{"key": 21836334489858688,"doc_count": 4026},{"key": 31489302390368051,"doc_count": 2717}]}
}
result.aggregations.agg.buckets列表中包含了查询的结果。
因为我们按照terms:uid进行聚合,每个bucket为uid相同的文档集合,key字段即为uid。
doc_count 字段表明bucket中文档的数目即sql语句中的count(*) as view_count
。
我们可以为查询添加额外的统计指标, sql描述:
SELECT uid, count(*) as view_count, avg(watch_duration) as avg_duration
FROM view_log
WHERE time >= #{since} AND time <= #{to}
GROUP BY uid;
ES 查询:
GET /view_log/_search
{"size" : 0,"query": {"range": {"time": {"gte": 0, // since"lte": 0 // to}}},"aggs": {"agg": { // agg为聚合的名称"terms": { // 聚合的条件为 uid 相同"field": "uid"},"aggs": { // 添加统计指标(Metrics)"avg_duration": { "avg": { // 统计 watch_duration 的平均值"field": "watch_duration" }}}}}
}
response:
{"took": 10,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": 100000,"max_score": 0,"hits": []},"aggregations": {"agg": {"buckets": [{"key": 21836334489858688,"doc_count": 4026,"avg_duration": {"value": 12778.882352941177}},{"key": 31489302390368051,"doc_count": 2717,"avg_duration": {"value": 2652.5714285714284}}]}
}
avg_duration.value 表示 watch_duration 的平均值即该用户的平均观看时长。
聚合分页器
在实际应用中用户的数量非常惊人, 不可能通过一次查询得到全部结果因此我们需要分页器分批取回:
GET /view_log/_search
{"size" : 0,"query": {"range": {"time": {"gte": 0, // since"lte": 0 // to}}},"aggs": {"agg": { "terms": { "field": "uid","size": 10000, // bucket 的最大个数"include": { // 将聚合结果分为10页,序号为[0,9], 取第一页"partition": 0,"num_partitions": 10 }},"aggs": { "avg_duration": { "avg": { "field": "watch_duration" }}}}}
}
上述查询与上节的查询几乎完全相同,只是在aggs.agg.terms字段中添加了include字段进行分页。
查询视频uv
单个视频uv
uv是指观看一个视频的用户数(unique visit),与此相对没有按照用户去重的观看数称为pv(page visit)。
用SQL语句来描述:
SELECT video_id, count(*) as pv, count(distinct uid) as uv
FROM view_log
WHERE video_id = #{video_id};
ElasticSearch可以方便的进行count(distinct)查询:
GET /view_log/_search
{"aggs": {"uv": {"cardinality": {"field": "uid"}}}
}
response:
{"took": 255,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": 17579,"max_score": 0,"hits": []},"aggregations": {"uv": {"value": 11}}
}
批量查询视频uv
ElasticSearch也可以批量查询count(distinct), 先用SQL进行描述:
SELECT video_id, count(*) as pv, count(distinct uid) as uv
FROM view_log
GROUP BY video_id;
查询:
GET /view_log/_search
{"size": 0,"aggs": {"video": {"terms": {"field": "video_id"},"aggs": {"uv": {"cardinality": {"field": "uid"}}}}}
}
response:
{"took": 313,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": 16940,"max_score": 0,"hits": []},"aggregations": {"video": {"buckets": [{"key": 25417499722062, // 视频id"doc_count": 427, // 视频观看次数 pv"uv": {"value": 124 // 观看视频的用户数 uv}},{"key": 72446898144,"doc_count": 744,"uv": {"value":233}}]}}
}
Having查询
SQL可以使用HAVING语句根据聚合结果进行过滤,ElasticSearch可以使用pipeline aggregations达到此效果不过语法较为繁琐。
根据 count 进行过滤
使用SQL查询观看超过200次的视频:
SELECT video_id, count(*) as view_count
FROM view_log
GROUP BY video_id
HAVING count(*) > 200;
GET /view_log/_search
{"size": 0,"aggs": {"view_count": {"terms": {"field": "video_id"},"aggs": {"having": {"bucket_selector": {"buckets_path": { // 选择 view_count 聚合的 doc_count 进行过滤"view_count": "_count"},"script": {"source": "params.view_count > 200"}}}}}}
}
response:
{"took": 83,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": 775,"max_score": 0,"hits": []},"aggregations": {"view_count": {"buckets": [{"key": 35025417499764062,"doc_count": 529},{"key": 19913672446898144,"doc_count": 759}]}}
}
ElasticSearch实现类似HAVING查询的关键在于使用bucket_selector选择聚合结果进行过滤。
根据其它指标进行过滤
接下来我们尝试查询平均观看时长大于5分钟的视频, 用SQL描述该查询:
SELECT video_id FROM view_log
GROUP BY video_id
HAVING avg(watch_duration) > 300;
GET /view_log/_search
{"size": 0,"aggs": {"video": {"terms": {"field": "video_id"},"aggs": {"avg_duration": {"avg": {"field": "watch_duration"} },"avg_duration_filter": {"bucket_selector": {"buckets_path": {"avg_duration": "avg_duration"},"script": {"source": "params.avg_duration > 200"}} }}}}
}
response:
{"took": 137,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": 255,"max_score": 0,"hits": []},"aggregations": {"video": {"buckets": [{"key": 5417499764062,"doc_count": 91576,"avg_duration": {"value": 103}},{"key": 19913672446898144,"doc_count": 15771,"avg_duration": {"value": 197}}]}}
}