时序预测 | MATLAB实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测

时序预测 | MATLAB实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测

目录

    • 时序预测 | MATLAB实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 学习总结
      • 参考资料

预测效果

1

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

X

在这里插入图片描述
在这里插入图片描述

基本介绍

时序预测 | MATLAB实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测;
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

程序设计

  • 完整源码和数据获取方式1:私信博主回复WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测,同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测,专栏外只能获取该程序。
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

学习总结

鲸鱼算法(Whale Optimization Algorithm,WOA)是一种基于自然界中鲸鱼群体行为的优化算法,可以用于解决优化问题。而卷积双向长短期记忆神经网络(CNN-BiLSTM)是一种结合了卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的网络结构,能够处理序列数据和空间数据,多输入单输出回归预测是指输入多个特征,输出一个数值的回归问题。
下面是使用鲸鱼算法优化卷积双向长短期记忆神经网络多输入单输出回归预测的步骤:
首先,需要确定网络的结构,包括卷积层、BiLSTM层、全连接层等。
然后,需要定义适应度函数,即网络在训练集上的预测误差。这里可以选择均方误根差(RMSE)作为适应度函数。
接下来,可以使用鲸鱼算法进行参数优化。具体来说,可以将CNN-BiLSTM网络的参数作为优化变量,将适应度函数作为目标函数,使用鲸鱼算法进行迭代优化,直到目标函数收敛或达到预设的迭代次数。
在优化过程中,需要设置好鲸鱼算法的参数,包括优化正则化率、学习率、隐藏层单元数等。
最后,可以使用优化后的CNN-BiLSTM网络进行多输入单输出回归预测。
需要注意的是,鲸鱼算法虽然可以用于优化神经网络,但并不是万能的,也存在局限性。在使用鲸鱼算法进行优化时,需要根据具体问题进行调参和优化,以获得更好的优化效果。

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39454.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python案例|Pandas正则表达式

字符串的处理在数据清洗中占比很大。也就是说,很多不规则的数据处理都是在对字符串进行处理。Excel提供了拆分、提取、查找和替换等对字符串处理的技术。在Pandas中同样提供了这些功能,并且在Pandas中还有正则表达式技术的加持,让其字符串处理能力更加强大。 01、正则 正则就是…

TypeScript相关面试题

typeScript 1.什么是TypeScript?是什么&#xff1f;特性&#xff1f;区别&#xff1f; 2.TypeScript数据类型&#xff1f;3.说说你对 TypeScript 中枚举类型的理解&#xff1f;应用场景&#xff1f;4.说说你对 TypeScript 中接口的理解&#xff1f;应用场景&#xff1f;使用方…

docker中的jenkins之流水线构建

docker中的jenkins之流水线构建项目 1、用node这种方式&#xff08;因为我用pipeline方式一直不执行&#xff0c;不知道为什么&#xff09; 2、创建项目 创建两个参数&#xff0c;一个是宿主端口号&#xff0c;一个是docker中的端口号 3、使用git项目中的Jenkinsfile 4、编写…

【AGI】世界首次实现室温超导LK-99

论文&#xff1a;The First Room-Temperature Ambient-Pressure Superconductor GPT论文总结&#xff1a; 根据所提供的信息&#xff0c;这篇论文报道了一种在室温和常压下工作的室温超导体LK-99。LK-99的超导性是通过微小的结构畸变引起的&#xff0c;而不是通过温度和压力等外…

09 - 连续的多个commit整理成1个

查看所有文章链接&#xff1a;&#xff08;更新中&#xff09;GIT常用场景- 目录 文章目录 将连续的多个commit整理成1个 将连续的多个commit整理成1个 将anranxiaohunzhang和xianglongshibazhang合并起来&#xff08;将anranxiaohunzhang合并到降龙十八掌上&#xff0c;生成新…

java GC日志分析示例

分析 Java 的 GC 日志可以帮助您了解应用程序的垃圾回收情况&#xff0c;从而检测内存泄漏、性能问题以及优化内存使用。下面是一些详细的步骤和示例来分析 Java 的 GC 日志。 假设您有一个 Java 应用程序运行的 GC 日志文件&#xff0c;我们将使用以下示例日志进行解释&#…

干翻Dubbo系列第十篇:Dubbo体系中ProtoBuf序列化方式详解

文章说明 本文内容整理自《孙哥说Dubbo系列视频课程》&#xff0c;孙帅老师课程细致、全面、深入、性价比极高。B站搜孙帅suns可以找到对应的试听视频&#xff0c;或者直接添加老师微信号suns45与他直接联系 一&#xff1a;序列化概念 补充说明&#xff1a; Kyro和Fst这两种…

设计模式-面试常问

1.单例模式 保证系统中&#xff0c;一个类&#xff0c;只有一个实例&#xff0c;并且提供对外访问。 优点&#xff1a;只有一个对象&#xff0c;可以节省资源。适合频繁创建销毁对象的场景。 实现&#xff1a;要用到static&#xff0c;静态私有对象。暴露单例的静态方法。 &…

docker 学习--03 环境安装(本人使用的win10 Linux也是在win10下模拟)

docker 学习–03 环境安装&#xff08;本人使用的win10 Linux也是在win10下模拟&#xff09; docker 学习-- 01 基础知识 docker 学习-- 02 常用命令 文章目录 docker 学习--03 环境安装&#xff08;本人使用的win10 Linux也是在win10下模拟&#xff09;[TOC](文章目录) 1. wi…

【数学建模】逻辑回归算法(Logistic Resgression)

逻辑回归算法 简介逻辑回归与条件概率绘制sigmoid函数 简介 逻辑回归算法是一种简单但功能强大的二元线性分类算法。需要注意的是&#xff0c;尽管"逻辑回归"名字带有“回归”二字&#xff0c;但逻辑回归是一个分类算法&#xff0c;而不是回归算法。 我认为&#xff…

冉冉升起的星火,再度升级迎来2.0时代!

文章目录 前言权威性评测结果 星火大模型多模态功能插件功能简历生成文档问答PPT生成 代码能力 福利 前言 前几天从技术群里看到大家都在谈论《人工智能大模型体验报告2.0》里边的内容&#xff0c;抱着好奇和学习的态度把报告看了一遍。看完之后瞬间被里边提到的科大讯飞的星火…

2008-2020年全国各省绿色金融发展指数(含原始数据)

2008-2020年全国各省绿色金融发展指数&#xff08;含原始数据&#xff09; 1、时间&#xff1a;2008-2020年 2、范围&#xff1a;30个省市 不含西藏 3、来源&#xff1a;原始数据整理自csmar、eps、wind等数据库 4、原始数据指标&#xff1a; A股上市环保企业新增银行贷款…

企业服务器数据库遭到malox勒索病毒攻击后如何解决,勒索病毒解密

网络技术的发展不仅为企业带来了更高的效率&#xff0c;还为企业带来信息安全威胁&#xff0c;其中较为常见的就是勒索病毒攻击。近期&#xff0c;我们公司收到很多企业的求助&#xff0c;企业的服务器数据库遭到了malox勒索病毒攻击&#xff0c;导致系统内部的许多重要数据被加…

HCIP VRRP技术

一、VRRP概述 VRRP&#xff08;Virtual Router Pedundancy Protocol&#xff09;虚拟路由器冗余协议&#xff0c;既能够实现网关的备份&#xff0c;又能够解决多个网关之间互相冲突的问题&#xff0c;从而提高网络可靠性。 局域网中的用户的终端通常采用配置一个默认网关的形…

【uniapp】 软键盘弹出后fixed定位被顶上去问题

问题描述 当手机设计的导航栏为fixed定位上去时&#xff0c;输入框获取焦点就会把顶部自定义的导航栏顶到上面去&#xff0c;如下图所示 解决办法 输入框设置 :adjust-position“false” <input type"text" :adjust-position"false" focus"i…

【Linux】多线程之单例模式

多线程之单例模式 什么是设计模式&#xff0c;都有哪些设计模式单例模式饿汉模式懒汉模式 什么是设计模式&#xff0c;都有哪些设计模式 设计模式就是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理…

AI绘画 | 一文学会Midjourney绘画,创作自己的AI作品(快速入门+参数介绍)

一、生成第一个AI图片 首先&#xff0c;生成将中文描述词翻译成英文 然后在输入端输入&#xff1a;/imagine prompt:Bravely running boy in Q version, cute head portrait 最后&#xff0c;稍等一会即可输出效果 说明&#xff1a; 下面的U1、U2、U3、U4代表的第一张、第二张…

Nacos AP架构集群搭建(Windows)

手写SpringCloud项目地址&#xff0c;求个star github:https://github.com/huangjianguo2000/spring-cloud-lightweight gitee:https://gitee.com/huangjianguo2000/spring-cloud-lightweigh 目录&#xff1a; 一&#xff1a;初始化MySQL 二&#xff1a;复制粘贴三份Nacos文…

分类预测 | MATLAB实现GAPSO-BP遗传算法组合粒子群算法优化BP神经网络多输入分类预测

分类预测 | MATLAB实现GAPSO-BP遗传算法组合粒子群算法优化BP神经网络多输入分类预测 目录 分类预测 | MATLAB实现GAPSO-BP遗传算法组合粒子群算法优化BP神经网络多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.分类预测 | MATLAB实现GAPSO-BP遗…

YoloV8优化:通道优先卷积注意力,效果秒杀CBAM和SE等 | 即插即用系列

💡💡💡本文独家改进:通道优先卷积注意力,采用多尺度结构来增强卷积运算捕获空间关系的能力,解决CBAM 整合了通道注意和空间注意,但它在其输出特征的所有通道上强制执行一致的空间注意分布。相反,SE只整合了通道注意,这限制了它选择重要区域的能力 通道优先卷积注意…