scikit keras_Scikit学习,TensorFlow,PyTorch,Keras…但是天秤座呢?

scikit keras

Welcome all! In the first episode of this series, I investigated the four most known machine learning frameworks and discussed which of these you should learn depending on your needs and goals.

w ^迎阅读所有! 在本系列的第一集中 ,我研究了四种最著名的机器学习框架,并讨论了根据您的需求和目标应该学习的机器学习框架。

Of course, we all know how PyTorch and TensorFlow are overwhelmingly effective and thorough when it comes to building deep learning algorithms from scratch. Similarly, Scikit-learn comes with excellent non-neural solutions and a whole lot of convenient data processing and evaluation functions.

当然,当我们从头开始构建深度学习算法时,我们都知道PyTorch和TensorFlow如何具有压倒性的优势和全面性。 同样, Scikit-learn具有出色的非神经解决方案以及大量便捷的数据处理和评估功能。

Today, I would like to draw your attention to something different: a rising machine learning framework, Libra, that absolutely deserves your attention and has tripled its amount of GitHub stars in only a week (reaching 1.8K)!

今天,我想提请您注意一些不同的东西:新兴的机器学习框架Libra绝对值得您的注意,并且在短短一周内将GitHub star的数量增加了两倍(达到1.8K)!

In this article, I will cover:

在本文中,我将介绍:

  1. The basic concept of the framework

    框架的基本概念

  2. The interesting features I spotted

    我发现的有趣功能

  3. The expected downsides

    预期的缺点

  4. A concrete use example

    具体的使用示例

Image for post
https://libradocs.github.io/https://libradocs.github.io/

一,基本概念 (I. Base Concept)

Libra is an easy-to-use machine learning framework that will allow you to load data, process it, train models and visualize results with only a few lines of code.

Libra是一个易于使用的机器学习框架,使您仅需几行代码即可加载数据,处理数据,训练模型并可视化结果。

The major advantage of this framework is its user-friendliness and beginner-friendliness. The diagram below shows about how fast you can setup an ML project compared to more common frameworks:

这个框架的主要优点是它的用户友好性初学者友好性 。 下图显示了与更常见的框架相比,您可以更快地设置ML项目:

Image for post
https://libradocs.github.io/https://libradocs.github.io/

This literally means that you can come with no or nearly no technical machine learning knowledge and implement a full project in about 5 minutes.

从字面上看,这意味着您可能没有或几乎没有任何机器学习知识,而仅需5分钟即可实现一个完整的项目。

The library is built for Python (⩾3.6) and revolves around a Client object that will handle your data but also the models you want to build, inference, plotting, etc.

该库是为Python(⩾3.6)构建的,围绕一个Client对象运行,该对象不仅可以处理数据,还可以处理要构建,推断,绘制等的模型。

You can easily install and initialize the library in a project with only lines of code: first, you need to install Libra and all the dependencies in your environment with pip install libra. Next, simply write from libra import client in a Python file and you’re all set!

您只需使用几行代码即可轻松地在项目中安装和初始化该库:首先,您需要使用pip install libra安装Libra以及环境中的所有依赖项。 接下来,只需from libra import client编写一个Python文件即可,一切就绪!

二。 有趣的功能 (II. Interesting Features)

Image for post
Photo by Tim Mossholder on Unsplash
Tim Mossholder在Unsplash上拍摄的照片

The first interesting feature I noticed is that some “queries” try to infer what is asked of them: for example, if you call a neural_network_query(), the only required argument is a quick explanation of what you want to do, like “please model the median number of households”.

我注意到的第一个有趣的功能是一些“查询” 尝试推断出他们的要求 :例如,如果您调用Neuro_network_query() ,则唯一需要的参数是对您想做什么的快速说明,例如“请模拟住户中位数”。

The target variable in your data will then be determined through the parsing of your explanation and computing the levenshtein distance on the column names.

然后,将通过解析您的解释并计算列名上的levenshtein区别来确定数据中的目标变量。

Kind of cool, right?

有点酷吧?

Moreover, you can simply load your .csv data file and it will automatically be handled in a Pandas DataFrame and preprocessed for you during the query, which is convenient if you want fast results!

此外,您只需加载.csv数据文件,它将在Pandas DataFrame中自动处理并在查询过程中为您进行预处理,如果您想要快速的结果,这将非常方便!

The fact that Libra relies on other machine learning libraries means that all ML tasks are virtually doable. Here is a list of the currently available queries, and includes Feedforward NN, CNN, SVM, Text generation, Sentiment analysis, etc.

Libra依赖于其他机器学习库这一事实意味着所有ML任务实际上都是可行的。 这是当前可用查询的列表,包括前馈NN,CNN,SVM,文本生成,情感分析等。

When you fine tune a model in with the Libra client, the evaluation results and plots are automatically displayed for you. Here is an example where I tried to predict sentiment scores of tweets from this Kaggle dataset using a simple neural network:

当您使用Libra客户端微调模型时,评估结果和图将自动为您显示。 这是一个示例,我尝试使用简单的神经网络从该Kaggle数据集中预测推文的情感评分:

Image for post

The project is growing pretty fast and even though the core development has been done, you can put your skills to use and contribute by adding missing bits of code and correcting bugs!

该项目正在Swift发展,即使完成了核心开发,您也可以通过添加缺少的代码并更正错误来利用和贡献自己的技能!

三, 缺点 (III. Downsides)

Image for post
Photo by Bernard Hermant on Unsplash
照片由Bernard Hermant在Unsplash上拍摄

The major downside you will experience with an ML framework that is so beginner-friendly is process over-simplification: by providing such high-level wrapping techniques, you sort of lose the sense of control over what is happening.

ML框架对初学者非常友好,这将给您带来的主要缺点是过分简化了流程 :通过提供这种高级包装技术,您会失去对正在发生的事情的控制感。

For example, when using the “neural network query”, the number of distinct target variables in your data will determine if a classification or regression task will be performed, and you will not have a choice in the neural net’s architecture details.

例如,当使用“神经网络查询”时,数据中不同目标变量的数量将确定是否要执行分类或回归任务,并且您将无法选择神经网络的体系结构详细信息。

As of today (August 2020), Libra is still being developed by the creators and the community, meaning that a lot of bugs appear here and there, which can be discouraging at first.

截至今天(2020年8月),天秤座仍由创作者和社区开发,这意味着到处都会出现许多错误 ,一开始可能会令人沮丧。

Even though Libra is a relatively new machine learning framework, it hasn’t (yet) re-invented the wheel, and relies on popular libraries like Keras, Transformers, Scikit-learn and NLTK. This mainly means that the number of hard dependencies is quite high, and can be an issue if you like to keep a light environment.

尽管Libra是一个相对较新的机器学习框架,但它(尚未)重新发明轮子,而是依赖于Keras,Transformers,Scikit-learn和NLTK等流行的库。 这主要意味着硬依赖性的数量非常高 ,如果您希望保持一个轻量级的环境,则可能会成为一个问题。

IV。 简单项目示例 (IV. Simple Project Example)

To show you how easy and fun it is to use Libra, let’s implement a small project together: based on the beginning of J.R.R Tolkien’s Silmarillion, we will generate new text with only 3 lines of code.

为了向您展示使用Libra是多么容易和有趣,让我们一起实现一个小项目:基于JRR Tolkien的Silmarillion的开头,我们将只用3行代码生成新文本

from libra import clienttolkien_client = client('silma_beg.txt')
tolkien_client.generate_text("generate some text please", return_sequences=1)
print(tolkien_client.models['text_generation']['generated_text'])

Libra will load GPT-2 from OpenAI and generate new text for us.

天秤座将从OpenAI加载GPT-2并为我们生成新文本。

In the following Gist, the first line is actually the input file I fed the network with. All the rest was automatically output by the model, and it’s pretty amazing!

在下面的要点中,第一行实际上是我为网络提供的输入文件。 其余的全部由模型自动输出,这真是太神奇了!

There was Eru, the One, who in Arda is called Ilúvatar; and he made first the Ainur, the Holy Ones, that were the offspring of his thought, and they were with him before aught else was made. And he spoke to them, propounding to them themes of music; and they sang before him, and he was glad. But for a long while they sang only each alone, or but few together, while the rest hearkened; for each comprehended only that part of me mind of Ilúvatar from which he came, and in the understanding of their brethren they grew but slowly. Yet ever as they listened they came to deeper understanding, and increased in unison and harmony. And the time came when they saw that, at last, by the love which the people gave her, there had been a way of getting over her by the love of her Creator. And they arose from their hiding place, and sought the land in the wilderness, and there they were put to the slaughter, for they were of the blood of the sons of Ilúvatar, and it was not easy to get over them. For those who had been left by their parents, as it were, had come to know the true nature of what they had done, and to believe that they had done what had been done, and that they had found the love of the Holy Ones; but Ilúvatar said to the other:Thy sons are born of the Father, and thou shalt have their hearts at my feet, and thou shalt have my prayers to thee in the heavens.And the angels said to Ilúvatar:Father, take these people, O Ilúvatar; make them come back.And Ilúvatar said unto them:Thou are worthy, O Ilúvatar, of these sons.And when they were come back to their hiding place, they were put to the slaughter; for they had seen that their father was not in the way of righteousness, but rather from a power of the Holy One, whom they saw the sons of Ilúvatar.And the angels, then, said unto Ilúvatar:The love of God, Ilúvatar, is strong and great; and thou shalt be glad, O Ilúvatar, if thou hast the Holy One with you. For there are few who ever have been so much as children, and

The model probably was pre-trained on the entire book, but the output grammar and generation relevance is nonetheless very good.

该模型可能已在整本书中进行了预训练,但是输出语法和生成相关性仍然非常好。

Image for post
Photo by Alex Guillaume on Unsplash
Alex Guillaume在Unsplash上拍摄的照片

This is what Libra is about: creating with only a handful of lines of code. The opportunity to load, train, infer, evaluate and plot without prior extended knowledge.

这就是Libra的目的: 只用几行代码创建 。 在没有事先扩展知识的情况下进行加载,训练,推断,评估和绘图的机会。

I hope you have enjoyed this article, thank you very much for reading through and make sure to try out this framework when you get the chance!

我希望您喜欢这篇文章,非常感谢您通读,并确保在有机会的情况下尝试使用此框架!

翻译自: https://towardsdatascience.com/scikit-learn-tensorflow-pytorch-keras-but-what-about-libra-a5102c2d834d

scikit keras

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/392016.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Educational Codeforces Round 25 C. Multi-judge Solving

题目链接:http://codeforces.com/contest/825/problem/C C. Multi-judge Solving time limit per test1 secondmemory limit per test256 megabytesinputstandard inputoutputstandard outputMakes solves problems on Decoforces and lots of other different onli…

山东省2021年高考成绩查询平台6,山东2021年高考成绩改为6月26日前公布

6月11日,山东省教育厅举行2021年第一次高考新闻发布会,介绍2021年高考基本情况、评卷安排、成绩公布等相关工作。山东省教育招生考试院新闻发言人、普招处处长李春光介绍,根据近期国家有关工作要求和强基计划招生工作需要,原定于6…

如何在vuejs里禁用eslint语法检查工具

eslint好是好,可要求很苛刻,对于我这种写代码很糙的媛。。。。。。 搜索的时候有的说加入 /* eslint-disabled */(有用,但只是部分代码享受此待遇) 还有说删除.eslintrc.js里包含eslint关键字的块,a---o---…

数据结构两个月学完_这是我作为数据科学家两年来所学到的

数据结构两个月学完It has been 2 years ever since I started my data science journey. Boy, that was one heck of a roller coaster ride!自从我开始数据科学之旅以来已经有两年了 。 男孩 ,那可真是坐过山车! There were many highs and lows, and…

数学哲学与科学哲学和计算机科学的能动作用,数学哲学与科学哲学和计算机科学的能动作用...

3 数学哲学与计算机科学的能动作用数学哲学对于计算机科学的影响主要表现于以下的事实:一些源于数学哲学(数学基础研究)的概念和理论在计算机科学的历史发展中发挥了十分重要的作用。例如,在此可以首先提及(一阶)谓词演算理论:这是由弗雷格(…

AngularDart4.0 指南- 表单

2019独角兽企业重金招聘Python工程师标准>>> 表单是商业应用程序的主流。您可以使用表单登录,提交帮助请求,下订单,预订航班,安排会议,并执行无数其他数据录入任务。 在开发表单时,创建一个数据…

迈向数据科学的第一步:在Python中支持向量回归

什么是支持向量回归? (What is Support Vector Regression?) Support vector regression is a special kind of regression that gives you some sort of buffer or flexibility with the error. How does it do that ? I’m going to explain it to you in simpl…

jQuery事件整合

一、jQuery事件 1、focus()元素获得焦点 2、blur()元素失去焦点 3、change() 表单元素的值发生变化(可用于验证用户名是否存在) 4、click() 鼠标单击 5、dbc…

tableau跨库创建并集_刮擦柏林青年旅舍,并以此建立一个Tableau全景。

tableau跨库创建并集One of the coolest things about making our personal project is the fact that we can explore topics of our own interest. On my case, I’ve had the chance to backpack around the world for more than a year between 2016–2017, and it was one…

1.0 Hadoop的介绍、搭建、环境

HADOOP背景介绍 1.1 Hadoop产生背景 HADOOP最早起源于Nutch。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。20…

如何实现多维智能监控?--AI运维的实践探索【一】

作者丨吴树生:腾讯高级工程师,负责SNG大数据监控平台建设。近十年监控系统开发经验,具有构建基于大数据平台的海量高可用分布式监控系统研发经验。 导语:监控数据多维化后,带来新的应用场景。SNG的哈勃多维监控平台在完…

使用Python和MetaTrader在5分钟内开始构建您的交易策略

In one of my last posts, I showed how to create graphics using the Plotly library. To do this, we import data from MetaTrader in a ‘raw’ way without automation. Today, we will learn how to automate this process and plot a heatmap graph of the correlation…

请对比html与css的异同,css2与css3的区别是什么?

css主要有三个版本,分别是css1、css2、css3。css2使用的比较多,因为css1的属性比较少,而css3有一些老式浏览器并不支持,所以大家在开发的时候主要还是使用css2。CSS1提供有关字体、颜色、位置和文本属性的基本信息,该版…

ipywidgets_未来价值和Ipywidgets

ipywidgetsHow to use Ipywidgets to visualize future value with different interest rates.如何使用Ipywidgets可视化不同利率下的未来价值。 There are some calculations that even being easy becoming better with a visualization of his terms. Moreover, the sooner…

计算机主机后面辐射大,电脑的背面辐射大吗

众所周知,电子产品的辐射都比较大,而电脑是非常常见的电子产品,它也存在着一定的辐射,那么电脑的背面辐射大吗?下面就一起随佰佰安全网小编来了解一下吧。有资料显示,电脑后面的辐射比前面大,长期近距离在…

装饰器3--装饰器作用原理

多思考,多记忆!!! 转载于:https://www.cnblogs.com/momo8238/p/7217345.html

用folium模块画地理图_使用Folium表示您的地理空间数据

用folium模块画地理图As a part of the Data Science community, Geospatial data is one of the most crucial kinds of data to work with. The applications are as simple as ‘Where’s my food delivery order right now?’ and as complex as ‘What is the most optim…

python创建类统计属性_轻松创建统计数据的Python包

python创建类统计属性介绍 (Introduction) Sometimes you may need a distribution figure for your slide or class. Since you are not using data, you want a quick solution.有时,您的幻灯片或课程可能需要一个分配图。 由于您不使用数据,因此需要快…

浅析STM32之usbh_def.H

【温故而知新】类似文章浅析USB HID ReportDesc (HID报告描述符) 现在将en.stm32cubef1\STM32Cube_FW_F1_V1.4.0\Middlewares\ST\STM32_USB_Host_Library\Core\Inc\usbh_def.H /********************************************************************************* file us…

C# (类型、对象、线程栈和托管堆)在运行时的相互关系

在介绍运行时的关系之前,先从一些计算机基础只是入手,如下图: 该图展示了已加载CLR的一个windows进程,该进程可能有多个线程,线程创建时会分配到1MB的栈空间.栈空间用于向方法传递实参,方法定义的局部变量也在实参上,上图的右侧展示了线程的栈内存,栈从高位内存地址向地位内存地…