红黑树的性质:
性质1:每个节点要么是黑色,要么是红色。
- 性质2:根节点是黑色。
- 性质3:每个叶子节点(NIL)是黑色。
- 性质4:每个红色节点的两个子节点一定都是黑色。不能有两个红色节点相连。
- 性质5:任意一节点到每个叶子节点的路径都包含数量相同的黑结点。俗称:黑高!
- 从性质5又可以推出:性质5.1:如果一个节点存在黑子节点,那么该结点肯定有两个子节点
总结:
根节点必黑,新增是红色,只能黑连黑,不能红连红
红黑树的操作:
红黑树能自平衡,它靠的三种操作:左旋、右旋和变色。
1.变色:结点的颜色由红变黑或由黑变红。
2.左旋:以某个结点作为支点(旋转结点),其右子结点变为旋转结点的父结点,右子结点的左子结点变为旋转结点的右子结点,左子结点保持不变。
3.右旋:以某个结点作为支点(旋转结点),其左子结点变为旋转结点的父结点,左子结点的右子结点变为旋转结点的左子结点,右子结点保持不变
红黑树插入节点情景分析
情景1:红黑树为空树
最简单的一种情景,直接把插入结点作为根结点就行
注意:根据红黑树性质2:根节点是黑色。还需要把插入结点设为黑色。
情景2:插入结点的Key已存在
处理:更新当前节点的值,为插入节点的值
情景3:插入结点的父结点为黑结点
由于插入的结点是红色的,当插入结点的黑色时,并不会影响红黑树的平衡,直接插入即可,无需做自平衡。
情景4:插入节点的父节点为红色
再次回想下红黑树的性质2:根结点是黑色。如果插入节点的父结点为红结点,那么该父结点不可能为根结点,所以插入结点总是存在祖父结点。
这一点很关键,因为后续的旋转操作肯定需要祖父结点的参与
插入情景4.1:叔叔结点存在并且为红结点
依据红黑树性质4可知,红色节点不能相连 ==> 祖父结点肯定为黑结点;
因为不可以同时存在两个相连的红结点。那么此时该插入子树的红黑层数的情况是:黑红红。显然最简单的处理方式是把其改为:红黑红
处理:
1.将P和U节点改为黑色
2.将PP改为红色
3.将PP设置为当前节点,进行后续处理
插入情景4.2:叔叔结点不存在或为黑结点,并且插入结点的父亲结点是祖父结点的左子结点
注意:单纯从插入前来看,叔叔节点非红即空(NIL节点),否则的话破坏了红黑树性质5,此路径会比其它路径多一个黑色节点。
插入情景4.2.1:新插入节点,为其父节点的左子节点(LL红色情况)
处理:
1.变颜色:将P设置为黑色,将PP设置为红色
2.对PP节点进行右旋
插入情景4.2.2:新插入节点,为其父节点的右子节点(LR红色情况)
处理:
1.对P进行左旋
2.将P设置为当前节点,得到LL红色情况
3.按照LL红色情况处理(1.变颜色 2.右旋PP)
插入情景4.3:叔叔结点不存在或为黑结点,并且插入结点的父亲结点是祖父结点的右子结点
处理:
1.变颜色:将P设置为黑色,将PP设置为红色
2.对PP节点进行左旋
插入情景4.3.2:新插入节点,为其父节点的左子节点(RL红色情况)
处理:
1.对P进行右旋
2.将P设置为当前节点,得到RR红色情况
3.按照RR红色情况处理(1.变颜色 2.左旋PP)
总结
爸叔通红就变色,爸红叔黑就旋转,哪边黑往哪边转。