数据结构入门最佳书籍_最佳数据科学书籍

数据结构入门最佳书籍

Introduction

介绍

I get asked a lot what resources I recommend for people who want to start their Data Science journey. This section enlists books I recommend you should read at least once in your life as a Data Scientist.

我被很多人问到了我为想要开始数据科学之旅的人们推荐哪些资源。 本节列出了一些书,我建议您作为数据科学家一生中至少应阅读一遍。

Do you need to read these books to learn to be a Data Scientist? The answer is: no. There are plenty of tutorials and free material online that is as good as these books. However, if you can afford to buy them and can read them as supplementary material they can become a very good resource to learn. Unlike online tutorials, these books have a structure and teach concepts in an organized and structured manner. This means instead of wasting time searching the internet to find good tutorials you can spend this time learning.

您需要阅读这些书才能学习成为一名数据科学家吗? 答案是不。 在线上有很多教程和免费资料,与这些书籍一样好。 但是,如果您有能力购买它们并可以阅读它们作为补充材料,那么它们可以成为学习的很好资源。 与在线教程不同,这些书具有结构化和以有组织和结构化的方式讲授概念。 这意味着您可以花时间学习,而不是浪费时间在互联网上寻找好的教程。

The books I recommend here cover the main topics that you will need to master as a Data Scientist: programming (python), data analysis, and Machine Learning (including deep learning). I know there are plenty of books on each topic but those are the ones that I have used in my learning journey and I can truly recommend them.

我在这里推荐的书涵盖了您作为数据科学家需要掌握的主要主题:编程(python),数据分析和机器学习(包括深度学习)。 我知道每个主题都有很多书,但是这些都是我在学习过程中使用的书,我可以真正推荐它们。

Python Programming

Python编程

Image for post
Amazon (affiliate link)亚马逊 (会员链接)

As a Data Scientist, you should be primarily a good programmer or at least work towards achieving programming proficiency at least in one language. I recommend learning python for its common usage in the Data Science and relatively simple learning curve.

作为数据科学家,您应该首先是一名优秀的程序员,或者至少要努力实现至少一种语言的编程能力。 我建议学习python,以了解它在数据科学中的常用用法以及相对简单的学习曲线。

This book is like a python bible. It has around 1600 pages and covers all basic and more advanced python concepts.

这本书就像Python圣经。 它大约有1600页,涵盖了所有基本和更高级的python概念。

It is a good book for someone starting with python as it has in-depth explanations of the language and programming concepts, and the content is presented in a simple understandable manner.

对于从python开始的人来说,这是一本好书,因为它对语言和编程概念有深入的说明,并且内容以简单易懂的方式呈现。

It will also be a very good revision for someone who has been working with python for a while but wants to get better at it, improve the understanding of the language and common concepts especially Object-Oriented Programming.

对于已经使用python一段时间但想要更好地使用它,提高对语言和通用概念(尤其是面向对象编程)的理解的人来说,这将是一个很好的修订。

You can get this book from here (affiliate link).

您可以从这里获得这本书(会员链接)。

Data Analysis

数据分析

Image for post
Amazon (affiliate link)亚马逊 (会员链接)

This book covers almost everything that concerns data analysis, data cleaning, and data preprocessing with pandas. And what do Data Science do most of the time?

本书涵盖了几乎所有涉及数据分析,数据清理以及使用熊猫进行数据预处理的内容。 数据科学在大多数情况下会做什么?

Unfortunately or fortunately, we spend most of the time preparing data for fitting in Machine Learning algorithms. This book covers it all, and just enough python for data analyst or junior Data Scientist to get familiar with programming and libraries popular for data analysis.

不幸的是,幸运的是,我们大部分时间都在准备数据以适合机器学习算法。 本书涵盖了所有内容,并且足够供数据分析人员或初级数据科学家使用python,以熟悉流行于数据分析的程序和库。

Additionally, this book has been written by Wes McKinney who is the author of pandas package. And who would be the best person to learn data analysis from if not the author of one of the most popular python data analysis library that has been created.

此外,这本书是由熊猫包装的作者韦斯·麦金尼(Wes McKinney)撰写的。 如果不是创建的最受欢迎的python数据分析库之一的作者,谁将是学习数据分析的最佳人选。

You can get this book from here (affiliate link).

您可以从这里获得这本书(会员链接)。

Machine Learning

机器学习

Image for post
Amazon (affiliate link).亚马逊 (会员链接)。

If you were to buy only one book about Machine Learning that would be my choice.

如果您只购买一本有关机器学习的书,那将是我的选择。

It could be a book for a beginner Data Scientist wanting to have an overview of Machine Learning algorithms and how to implement them on real-life examples using scikit-learn.

它可能是一本针对初学者数据科学家的书,该书希望概述机器学习算法以及如何使用scikit-learn在实际示例中实现它们。

It is also a good revision for someone who is already familiar with Machine Learning concepts and wants a book for quick references and review.

对于已经熟悉机器学习概念并且想要一本书以便快速参考和复习的人来说,这也是一个很好的修订。

Additionally, it has a fantastic second section that focuses on od deep learning with Keras and TensorFlow.

此外,它还有一个精彩的第二部分,重点介绍了使用Keras和TensorFlow进行深度学习。

You can get this book from here (affiliate link).

您可以从这里获得这本书(会员链接)。

Other topics in Data Science

数据科学中的其他主题

Being a Data Scientist does not involve only python programming, data analysis, and Machine Learning. There are other topics that you should master in this profession. The first areas that come to my mind are Maths and Statistics.

成为数据科学家不仅仅涉及python编程,数据分析和机器学习。 在这个专业中,您还应该掌握其他主题。 我想到的第一个领域是数学和统计学。

​I am not recommending any books on those topics as I have been relying on my high school and university knowledge with those, and supplying this knowledge with online tutorials and resources. If I read any good books on those topics I will update this list.

``我不推荐任何有关这些主题的书,因为我一直依赖于我的高中和大学知识,并向这些知识提供在线教程和资源。 如果我阅读了有关这些主题的好书,则将更新此列表。

Originally published at https://www.aboutdatablog.com on August 19, 2020.

本来在发表 https://www.aboutdatablog.com 于2020年8月19日。

PS: I am writing articles that explain basic Data Science concepts in a simple and comprehensible on aboutdatablog.com. If you liked this article there are some other ones you may enjoy:

PS:我写的文章在 aboutdatablog.com 上以简单易懂的方式解释了基本的数据科学概念如果您喜欢这篇文章,您可能还会喜欢其他一些文章:

翻译自: https://towardsdatascience.com/best-data-science-books-be1ab472876d

数据结构入门最佳书籍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390926.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

函数式编程概念

什么是函数式编程 简单地说,函数式编程通过使用函数,将值转换成抽象单元,接着用于构建软件系统。 面向对象VS函数式编程 面向对象编程 面向对象编程认为一切事物皆对象,将现实世界的事物抽象成对象,现实世界中的关系抽…

多重插补 均值插补_Feature Engineering Part-1均值/中位数插补。

多重插补 均值插补Understanding the Mean /Median Imputation and Implementation using feature-engine….!了解使用特征引擎的均值/中位数插补和实现…。! 均值或中位数插补: (Mean or Median Imputation:) The mean or median value should be calc…

linux 查看用户上次修改密码的日期

查看root用户密码上次修改的时间 方法一:查看日志文件: # cat /var/log/secure |grep password changed 方法二: # chage -l root-----Last password change : Feb 27, 2018 Password expires : never…

客户行为模型 r语言建模_客户行为建模:汇总统计的问题

客户行为模型 r语言建模As a Data Scientist, I spend quite a bit of time thinking about Customer Lifetime Value (CLV) and how to model it. A strong CLV model is really a strong customer behavior model — the better you can predict next actions, the better yo…

【知识科普】解读闪电/雷电网络,零基础秒懂!

知识科普,解读闪电/雷电网络,零基础秒懂! 闪电网络的技术是革命性的,将实现即时0手续费的小金额支付。第一步是解决扩容问题,第二部就是解决共通性问题,利用原子交换协议和不同链条的状态通道结合&#xff…

Alpha 冲刺 (5/10)

【Alpha go】Day 5! Part 0 简要目录 Part 1 项目燃尽图Part 2 项目进展Part 3 站立式会议照片Part 4 Scrum 摘要Part 5 今日贡献Part 1 项目燃尽图 Part 2 项目进展 已分配任务进度博客检索功能:根据标签检索流程图 -> 实现 -> 测试近期比…

多维空间可视化_使用GeoPandas进行空间可视化

多维空间可视化Recently, I was working on a project where I was trying to build a model that could predict housing prices in King County, Washington — the area that surrounds Seattle. After looking at the features, I wanted a way to determine the houses’ …

机器学习 来源框架_机器学习的秘密来源:策展

机器学习 来源框架成功的机器学习/人工智能方法 (Methods for successful Machine learning / Artificial Intelligence) It’s widely stated that data is the new oil, and like oil, data needs the right refinement to evolve to be utilised perfectly. The power of ma…

WebLogic调用WebService提示Failed to localize、Failed to create WsdlDefinitionFeature

在本地Tomcat环境下调用WebService正常&#xff0c;但是部署到WebLogic环境中&#xff0c;则提示警告&#xff1a;[Failed to localize] MEX0008.PARSING_MDATA_FAILURE<SOAP_1_2 ......警告&#xff1a;[Failed to localize] MEX0008.PARSING_MDATA_FAILURE<SOAP_1_1 ..…

呼吁开放外网_服装数据集:呼吁采取行动

呼吁开放外网Getting a dataset with images is not easy if you want to use it for a course or a book. Yes, there are many datasets with images, but few of them are suitable for commercial or educational use.如果您想将其用于课程或书籍&#xff0c;则获取带有图像…

React JS 组件间沟通的一些方法

刚入门React可能会因为React的单向数据流的特性而遇到组件间沟通的麻烦&#xff0c;这篇文章主要就说一说如何解决组件间沟通的问题。 1.组件间的关系 1.1 父子组件 ReactJS中数据的流动是单向的&#xff0c;父组件的数据可以通过设置子组件的props传递数据给子组件。如果想让子…

数据可视化分析票房数据报告_票房收入分析和可视化

数据可视化分析票房数据报告Welcome back to my 100 Days of Data Science Challenge Journey. On day 4 and 5, I work on TMDB Box Office Prediction Dataset available on Kaggle.欢迎回到我的100天数据科学挑战之旅。 在第4天和第5天&#xff0c;我将研究Kaggle上提供的TM…

先知模型 facebook_Facebook先知

先知模型 facebook什么是先知&#xff1f; (What is Prophet?) “Prophet” is an open-sourced library available on R or Python which helps users analyze and forecast time-series values released in 2017. With developers’ great efforts to make the time-series …

搭建Maven私服那点事

摘要&#xff1a;本文主要介绍在CentOS7.1下使用nexus3.6.0搭建maven私服&#xff0c;以及maven私服的使用&#xff08;将自己的Maven项目指定到私服地址、将第三方项目jar上传到私服供其他项目组使用&#xff09; 一、简介 Maven是一个采用纯Java编写的开源项目管理工具, Mave…

gan训练失败_我尝试过(但失败了)使用GAN来创作艺术品,但这仍然值得。

gan训练失败This work borrows heavily from the Pytorch DCGAN Tutorial and the NVIDA paper on progressive GANs.这项工作大量借鉴了Pytorch DCGAN教程 和 有关渐进式GAN 的 NVIDA论文 。 One area of computer vision I’ve been wanting to explore are GANs. So when m…

19.7 主动模式和被动模式 19.8 添加监控主机 19.9 添加自定义模板 19.10 处理图形中的乱码 19.11 自动发现...

2019独角兽企业重金招聘Python工程师标准>>> 19.7 主动模式和被动模式 • 主动或者被动是相对客户端来讲的 • 被动模式&#xff0c;服务端会主动连接客户端获取监控项目数据&#xff0c;客户端被动地接受连接&#xff0c;并把监控信息传递给服务端 服务端请求以后&…

华盛顿特区与其他地区的差别_使用华盛顿特区地铁数据确定可获利的广告位置...

华盛顿特区与其他地区的差别深度分析 (In-Depth Analysis) Living in Washington DC for the past 1 year, I have come to realize how WMATA metro is the lifeline of this vibrant city. The metro network is enormous and well-connected throughout the DMV area. When …

Windows平台下kafka环境的搭建

近期在搞kafka&#xff0c;在Windows环境搭建的过程中遇到一些问题&#xff0c;把具体的流程几下来防止后面忘了。 准备工作&#xff1a; 1.安装jdk环境 http://www.oracle.com/technetwork/java/javase/downloads/index.html 2.下载kafka的程序安装包&#xff1a; http://kafk…

铺装s路画法_数据管道的铺装之路

铺装s路画法Data is a key bet for Intuit as we invest heavily in new customer experiences: a platform to connect experts anywhere in the world with customers and small business owners, a platform that connects to thousands of institutions and aggregates fin…

IBM推全球首个5纳米芯片:计划2020年量产

IBM日前宣布&#xff0c;该公司已取得技术突破&#xff0c;利用5纳米技术制造出密度更大的芯片。这种芯片可以将300亿个5纳米开关电路集成在指甲盖大小的芯片上。 IBM推全球首个5纳米芯片 IBM表示&#xff0c;此次使用了一种新型晶体管&#xff0c;即堆叠硅纳米板&#xff0c;将…