函数式编程概念

什么是函数式编程

简单地说,函数式编程通过使用函数,将值转换成抽象单元,接着用于构建软件系统。

面向对象VS函数式编程

面向对象编程

面向对象编程认为一切事物皆对象,将现实世界的事物抽象成对象,现实世界中的关系抽象成类、继承,帮助人们实现对现实世界的抽象和数字建模。面向对象编程有三个特征,分别是封装,继承和多态。面向对象的主要目标是问题的分解,如下图所示:
object

函数式编程

函数式编程以函数为抽象单元和行为单元,实现数据的封装和隐藏,与面向对象将问题分解成多组“名词”或对象不同,函数式方法将相同的问题分解成多组“动词”或函数。函数式编程也可以通过组合来构造更大的函数,实现抽象的行为。如下图所示:一种函数式的部件组成一个完整的系统的方法,就是取一个“值”,然后将它逐渐“改变”,通过一个原始的或者组合的函数,成为另外一个值。
func_jpeg

两者差异

在一个面向对象的系统内部,对象之间的交互会引起各种对象内部状态的变化,而整个系统的变化是由许多小的,细微的变化混合形成的,这些相互关联的状态变化形成了一个概念上的“变化网”。但我们需要跟踪这边变化的时候,就需要了解彼此之间这种微妙且广泛的变化。
相比之下,函数式系统则努力减少可见状态的修改。向一个遵循函数式的系统添加新功能就成了理解如何在局限的上下文环境中,无破坏地进行数据转换。函数式编程以命令的方式构建系统,并通过显性的状态来改变缩减到最小来变得更加模块化。

例子

  function demo{                                                                    return function(array){return fun.apply(null,array);//返回一个函数}}

总结

总的来说,函数式编程包括以下四个方面:

  1. 确定抽象函数,并为其构造函数
  2. 利用已有的函数来构造更为复杂的函数
  3. 通过将函数传给其他的函数来构建更为复杂的抽象。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390925.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多重插补 均值插补_Feature Engineering Part-1均值/中位数插补。

多重插补 均值插补Understanding the Mean /Median Imputation and Implementation using feature-engine….!了解使用特征引擎的均值/中位数插补和实现…。! 均值或中位数插补: (Mean or Median Imputation:) The mean or median value should be calc…

linux 查看用户上次修改密码的日期

查看root用户密码上次修改的时间 方法一:查看日志文件: # cat /var/log/secure |grep password changed 方法二: # chage -l root-----Last password change : Feb 27, 2018 Password expires : never…

客户行为模型 r语言建模_客户行为建模:汇总统计的问题

客户行为模型 r语言建模As a Data Scientist, I spend quite a bit of time thinking about Customer Lifetime Value (CLV) and how to model it. A strong CLV model is really a strong customer behavior model — the better you can predict next actions, the better yo…

【知识科普】解读闪电/雷电网络,零基础秒懂!

知识科普,解读闪电/雷电网络,零基础秒懂! 闪电网络的技术是革命性的,将实现即时0手续费的小金额支付。第一步是解决扩容问题,第二部就是解决共通性问题,利用原子交换协议和不同链条的状态通道结合&#xff…

Alpha 冲刺 (5/10)

【Alpha go】Day 5! Part 0 简要目录 Part 1 项目燃尽图Part 2 项目进展Part 3 站立式会议照片Part 4 Scrum 摘要Part 5 今日贡献Part 1 项目燃尽图 Part 2 项目进展 已分配任务进度博客检索功能:根据标签检索流程图 -> 实现 -> 测试近期比…

多维空间可视化_使用GeoPandas进行空间可视化

多维空间可视化Recently, I was working on a project where I was trying to build a model that could predict housing prices in King County, Washington — the area that surrounds Seattle. After looking at the features, I wanted a way to determine the houses’ …

机器学习 来源框架_机器学习的秘密来源:策展

机器学习 来源框架成功的机器学习/人工智能方法 (Methods for successful Machine learning / Artificial Intelligence) It’s widely stated that data is the new oil, and like oil, data needs the right refinement to evolve to be utilised perfectly. The power of ma…

WebLogic调用WebService提示Failed to localize、Failed to create WsdlDefinitionFeature

在本地Tomcat环境下调用WebService正常&#xff0c;但是部署到WebLogic环境中&#xff0c;则提示警告&#xff1a;[Failed to localize] MEX0008.PARSING_MDATA_FAILURE<SOAP_1_2 ......警告&#xff1a;[Failed to localize] MEX0008.PARSING_MDATA_FAILURE<SOAP_1_1 ..…

呼吁开放外网_服装数据集:呼吁采取行动

呼吁开放外网Getting a dataset with images is not easy if you want to use it for a course or a book. Yes, there are many datasets with images, but few of them are suitable for commercial or educational use.如果您想将其用于课程或书籍&#xff0c;则获取带有图像…

React JS 组件间沟通的一些方法

刚入门React可能会因为React的单向数据流的特性而遇到组件间沟通的麻烦&#xff0c;这篇文章主要就说一说如何解决组件间沟通的问题。 1.组件间的关系 1.1 父子组件 ReactJS中数据的流动是单向的&#xff0c;父组件的数据可以通过设置子组件的props传递数据给子组件。如果想让子…

数据可视化分析票房数据报告_票房收入分析和可视化

数据可视化分析票房数据报告Welcome back to my 100 Days of Data Science Challenge Journey. On day 4 and 5, I work on TMDB Box Office Prediction Dataset available on Kaggle.欢迎回到我的100天数据科学挑战之旅。 在第4天和第5天&#xff0c;我将研究Kaggle上提供的TM…

先知模型 facebook_Facebook先知

先知模型 facebook什么是先知&#xff1f; (What is Prophet?) “Prophet” is an open-sourced library available on R or Python which helps users analyze and forecast time-series values released in 2017. With developers’ great efforts to make the time-series …

搭建Maven私服那点事

摘要&#xff1a;本文主要介绍在CentOS7.1下使用nexus3.6.0搭建maven私服&#xff0c;以及maven私服的使用&#xff08;将自己的Maven项目指定到私服地址、将第三方项目jar上传到私服供其他项目组使用&#xff09; 一、简介 Maven是一个采用纯Java编写的开源项目管理工具, Mave…

gan训练失败_我尝试过(但失败了)使用GAN来创作艺术品,但这仍然值得。

gan训练失败This work borrows heavily from the Pytorch DCGAN Tutorial and the NVIDA paper on progressive GANs.这项工作大量借鉴了Pytorch DCGAN教程 和 有关渐进式GAN 的 NVIDA论文 。 One area of computer vision I’ve been wanting to explore are GANs. So when m…

19.7 主动模式和被动模式 19.8 添加监控主机 19.9 添加自定义模板 19.10 处理图形中的乱码 19.11 自动发现...

2019独角兽企业重金招聘Python工程师标准>>> 19.7 主动模式和被动模式 • 主动或者被动是相对客户端来讲的 • 被动模式&#xff0c;服务端会主动连接客户端获取监控项目数据&#xff0c;客户端被动地接受连接&#xff0c;并把监控信息传递给服务端 服务端请求以后&…

华盛顿特区与其他地区的差别_使用华盛顿特区地铁数据确定可获利的广告位置...

华盛顿特区与其他地区的差别深度分析 (In-Depth Analysis) Living in Washington DC for the past 1 year, I have come to realize how WMATA metro is the lifeline of this vibrant city. The metro network is enormous and well-connected throughout the DMV area. When …

Windows平台下kafka环境的搭建

近期在搞kafka&#xff0c;在Windows环境搭建的过程中遇到一些问题&#xff0c;把具体的流程几下来防止后面忘了。 准备工作&#xff1a; 1.安装jdk环境 http://www.oracle.com/technetwork/java/javase/downloads/index.html 2.下载kafka的程序安装包&#xff1a; http://kafk…

铺装s路画法_数据管道的铺装之路

铺装s路画法Data is a key bet for Intuit as we invest heavily in new customer experiences: a platform to connect experts anywhere in the world with customers and small business owners, a platform that connects to thousands of institutions and aggregates fin…

IBM推全球首个5纳米芯片:计划2020年量产

IBM日前宣布&#xff0c;该公司已取得技术突破&#xff0c;利用5纳米技术制造出密度更大的芯片。这种芯片可以将300亿个5纳米开关电路集成在指甲盖大小的芯片上。 IBM推全球首个5纳米芯片 IBM表示&#xff0c;此次使用了一种新型晶体管&#xff0c;即堆叠硅纳米板&#xff0c;将…

async 和 await的前世今生 (转载)

async 和 await 出现在C# 5.0之后&#xff0c;给并行编程带来了不少的方便&#xff0c;特别是当在MVC中的Action也变成async之后&#xff0c;有点开始什么都是async的味道了。但是这也给我们编程埋下了一些隐患&#xff0c;有时候可能会产生一些我们自己都不知道怎么产生的Bug&…