OpenCV图像处理——轮廓检测

目录

  • 图像的轮廓
    • 查找轮廓
    • 绘制轮廓
  • 轮廓的特征
    • 轮廓面积
    • 轮廓周长
    • 轮廓近似
    • 凸包
    • 边界矩形
    • 最小外接圆
    • 椭圆拟合
    • 直线拟合
  • 图像的矩特征
    • 矩的概念
    • 图像中的矩特征

图像的轮廓

在这里插入图片描述

查找轮廓

binary,contours,hierarchy=cv.findContours(img,mode,method)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

绘制轮廓

cv.drawContours(img,coutours,index,color,width)

在这里插入图片描述

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimg = cv2.imread('./汪学长的随堂资料/4/图像操作/contours.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny=cv.Canny(img_gray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
img=cv.drawContours(img,contours,-1,(0,0,255),2)
plt.imshow(img[:,:,::-1])

在这里插入图片描述

轮廓的特征

在这里插入图片描述

轮廓面积

area=cv.contourArea(cnt)

轮廓周长

perimeter=cv.arcLength(cnt,isclosed)

在这里插入图片描述

轮廓近似

在这里插入图片描述

approx=cv.approxPolyDP(cnt,epsilon,isclosed)

在这里插入图片描述

img = cv2.imread('./汪学长的随堂资料/4/图像操作/contours2.png')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt=contours[0]
area=cv.contourArea(cnt)
length=cv.arcLength(cnt,True)
esplion=0.1*length
approx=cv.approxPolyDP(cnt,esplion,True)
img=cv.polylines(img,[approx],True,(0,0,255),2)
plt.imshow(img[:,:,::-1])

在这里插入图片描述

凸包

在这里插入图片描述

hull=cv.convexHull(points,clockwise,returnPoints)

在这里插入图片描述
在这里插入图片描述

img=cv.imread('./image/star 2.jpeg')
img1=img.copy()
imggray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
canny=cv.canny(imggray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
hulls=[]
for cnt in contours:hull=cv.convexHull(cnt)hulls.append(hull)
img1=cv.drawContours(img1,hulls,-1,(0,255,0),2)
plt.imshow(img1[:,:,::-1])

在这里插入图片描述

边界矩形

在这里插入图片描述
在这里插入图片描述

img=cv.imread('./image/arrows,jpg')
img_gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(img_gray,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
x,y,w,h=cv.boundingRect(cnt)
imgRect=cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),3)
plt.imshow(imgRect[:,:,::-1])

在这里插入图片描述

s=cv.minAreaRect(cnt)
a=cv.boxPoints(s)
a=np.int0(a)
cv.polylines(imgRect,[a],True,(0,0,255),3)
plt.imshow(imgRect[:,:,::-1])

在这里插入图片描述

最小外接圆

在这里插入图片描述

(x,y),r=cv.minEnclosingCircle(cnt)
center=(int(x),int(y))
r=int(r)
imgcircle=cv.circle(img,center,r,(0,255,0),3)
plt.imshow(imgcircle[:,:,::-1])

在这里插入图片描述

椭圆拟合

在这里插入图片描述

ellipse=cv.fitEllipse(cnt)
imgellipse=cv.ellipse(img,ellipse,(0,255,255,3))
plt.imshow(imgellipse[:,:,::-1])

在这里插入图片描述

直线拟合

在这里插入图片描述

output=cv.fitLine(points,distType,param,aeps)

在这里插入图片描述

[vx,vy,x,y]=cv.fitLine(cnt,cv.DIST_L2,0,0.01,0.01)
rows,cols=img.shape[:2]
lefty=int((-x*vy/vx)+y)
righty=int(((cols-x)*vy/vx)+y)
imgline=cv.line(img,(0,lefty),(cols-1,righty),(0,0,255),3)
plt.imshow(imgline[:,:,::-1])

在这里插入图片描述

图像的矩特征

在这里插入图片描述

矩的概念

在这里插入图片描述

图像中的矩特征

在这里插入图片描述
在这里插入图片描述

moments(array,binaryImage=False)

在这里插入图片描述

img=cv.imread('./image/arrows.jpg',0)
imgmn=cv.moments(img)
imghu=cv.HuMoments(imgmn)
ret,thresh=cv.threshold(img,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
mn=cv.moments(cnt)
hu=cv.HuMoments(mn)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/38918.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WSL2安装Ubuntu,配置机器学习环境

文章目录 1.WSL2安装Ubuntu,更改安装位置,作为开发环境供vscode和pycharm使用:2.更换国内源:3.安装图形界面:4.安装cudacudnntorch5.安装opencv6.调用摄像头7.使用yolov8测试 WSL全称Windows Subsystem for Linux&…

印度货代专线【我国到印度专线有哪些方式】

随着全球贸易的不断发展,我国与印度之间的贸易往来也日益频繁。作为两个人口最多的国家之一,中国和印度之间的货物运输需求不断增长。为了满足这一需求,印度货代专线应运而生,为进出口商提供高效、可靠的货物运输服务。本文将探索…

939. 最小面积矩形;2166. 设计位集;2400. 恰好移动 k 步到达某一位置的方法数目

939. 最小面积矩形 核心思想:枚举矩形的右边那条边的两个点,并用一个哈希表存储相同纵坐标的最近出现的列的列数,不断更新最近出现的左边那条边。 2166. 设计位集 核心思想:这题主要是时间复杂度的优化,用一个flag来标记当前翻转…

CSS自学框架之表单

首先我们看一下表单样式,下面共有5张截图 一、CSS代码 /*表单*/fieldset{border: none;margin-bottom: 2em;}fieldset > *{ margin-bottom: 1em }fieldset:last-child{ margin-bottom: 0 }fieldset legend{ margin: 0 0 1em }/* legend标签是CSS中用于定义…

IOS开发-XCode14介绍与入门

IOS开发-XCode14介绍与入门 1. XCODE14的小吐槽2. XCODE的功能bar一览3. XCODE项目配置一览4. XCODE更改DEBUG/RELEASE模式5. XCODE单元测试 1. XCODE14的小吐槽 iOS开发工具一直有个毛病,就是新版本的开发工具的总会有一些奇奇怪怪的bug。比如在我的Mac-Pro&#…

Springboot 实践(3)配置DataSource及创建数据库

前文讲述了利用MyEclipse2019开发工具,创建maven工程、加载springboot、swagger-ui功能。本文讲述创建数据库,为项目配置数据源,实现数据的增删改查服务,并通过swagger-ui界面举例调试服务控制器 创建数据库 项目使用MySQL 8.0.…

vue基础知识四:Vue实例挂载的过程

一、思考 我们都听过知其然知其所以然这句话 那么不知道大家是否思考过new Vue()这个过程中究竟做了些什么? 过程中是如何完成数据的绑定,又是如何将数据渲染到视图的等等 一、分析 首先找到vue的构造函数 源码位置:src\core\instance\…

一生一芯4——使用星火应用商店在ubuntu下载QQ、微信、百度网盘

星火应用商店可以非常方便的完成一些应用的下载,下面是官方网址 http://spark-app.store/download 我使用的是intel处理器,无需下载依赖项,直接点击软件本体 我这里下载amd64,根据自己的处理器下载对应版本 sudo apt install ./spark-stor…

做视频_Style

Video 1> 风格2> 技巧3> 借鉴 🔗 B站视频 1> 风格 记录分享生活,工作,学习方面的总结; 4个段位: 实用 -> 简洁 -> 清晰流畅 -> 生动有趣 2> 技巧 1> 大视频分段录制,最后合并…

pytorch入门-神经网络

神经网络的基本骨架 import torch from torch import nn #nn模块是PyTorch中用于构建神经网络模型的核心模块。它提供了各种类和函数,可以帮助你定义和训练神经网络。class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__() #调用 super(Tudui,…

数据结构入门指南:二叉树

目录 文章目录 前言 1. 树的概念及结构 1.1 树的概念 1.2 树的基础概念 1.3 树的表示 1.4 树的应用 2. 二叉树 2.1 二叉树的概念 2.2 二叉树的遍历 前言 在计算机科学中,数据结构是解决问题的关键。而二叉树作为最基本、最常用的数据结构之一,不仅在算法…

java对大文件分片上传

这里记录一下,Java对大文件的切分,和后端接口分片上传的实现逻辑 正常,前后端分离的项目其实是前端去切分文件,后端接口接收到切分后的分片文件去合并,这里都用java来记录一下。特别说明:我这里用的是zip包…

vue+java实现在线播放mp4视频

java: 读取本地视频文件的流然后给response的输出流 File file new File("/Users/zhangqingtian/Documents/水库/Floodforecast/static/" videoName);BufferedInputStream inputStream new BufferedInputStream(new FileInputStream(file));response.setContentT…

ReactDOM模块react-dom/client没有默认导出报错解决办法

import ReactDOM 模块“"E:/Dpandata/Shbank/rt-pro/node_modules/.pnpm/registry.npmmirror.comtypesreact-dom18.2.7/node_modules/types/react-dom/client"”没有默认导出。 解决办法 只需要在tsconfig.json里面添加配置 "esModuleInterop": true 即…

【C++】queue容器

1.queue容器基本概念 2.queue常用接口 #include <iostream> using namespace std;//队列queue #include<queue>//创建Person类 class Person { public:Person(string name, int age){this->m_Name name;this->m_Age age;}string m_Name; //姓名int m_Age; …

mysql创建新用户并授权

目录 前言登录到mysql创建用户用户授权更改用户密码参考 前言 略 登录到mysql shell> mysql -h127.0.0.1 -P3306 -uroot -p******创建用户 mysql> CREATE USER abc% IDENTIFIED BY 123456;用户授权 mysql> GRANT all privileges ON ruoyi.* TO abc%;用户ruoyi拥有…

优维低代码实践:自定义模板

优维低代码技术专栏&#xff0c;是一个全新的、技术为主的专栏&#xff0c;由优维技术委员会成员执笔&#xff0c;基于优维7年低代码技术研发及运维成果&#xff0c;主要介绍低代码相关的技术原理及架构逻辑&#xff0c;目的是给广大运维人提供一个技术交流与学习的平台。 优维…

禾赛科技Q2营收交付双新高,国产激光雷达从量变到质变

随着2022年激光雷达元年、2023年城市智能辅助驾驶&#xff08;NOA&#xff09;元年相继到来&#xff0c;激光雷达产业迎来爆发期。 今年以来&#xff0c;自动驾驶公司、汽车制造商以及移动出行公司等各路人马积极推动城市级别的智能辅助驾驶全面落地&#xff0c;北京、上海、深…

通过css设置filter 属性,使整个页面呈现灰度效果,让整个网页变灰

通过css设置filter 属性设置页面整体置灰 效果图: 通过设置 filter 属性为 grayscale(100%)&#xff0c;页面中的所有元素都会被应用灰色滤镜效果&#xff0c;使整个页面呈现灰度效果。 <style type"text/css"> html { filter: grayscale(100%); -webkit-f…

git pull 某一个文件或文件夹

QQ: 2967732156 背景&#xff1a; 在使用Oracle VM VirtualBox&#xff0c;进行Linux开发时&#xff0c;随着使用内存越来越少&#xff0c;空间已不足拉取整个代码库。 Ubuntu1604内存够&#xff0c;Ubuntu18.04内存不够。 思路&#xff1a; 第一步&#xff1a;从问题本身…