代码随想录算法训练营第58天|动态规划part15|392.判断子序列、115.不同的子序列

代码随想录算法训练营第58天|动态规划part15|392.判断子序列、115.不同的子序列

392.判断子序列

392.判断子序列

思路:

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础。

动态规划五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。

注意这里是判断s是否为t的子序列。即t的长度是大于等于s的。

  1. 确定递推公式

在确定递推公式的时候,首先要考虑如下两种操作,整理如下:

  • if (s[i - 1] == t[j - 1])
    t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    相当于t要删除元素,继续匹配

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义)

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

  1. dp数组如何初始化

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。

因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:

如果要是定义的dp[i][j]是以下标i为结尾的字符串s和以下标j为结尾的字符串t,初始化就比较麻烦了。

dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。

vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));

  1. 确定遍历顺序

同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右

在这里插入图片描述

  1. 举例推导dp数组

在这里插入图片描述

dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。

图中dp[s.size()][t.size()] = 3, 而s.size() 也为3。所以s是t 的子序列,返回true。

代码:

python

class Solution(object):def isSubsequence(self, s, t):""":type s: str:type t: str:rtype: bool"""dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]for i in range(1, len(s)+1):for j in range(1, len(t)+1):if s[i-1] == t[j-1]:dp[i][j] = dp[i-1][j-1] + 1else:dp[i][j] = dp[i][j-1]return dp[-1][-1] == len(s)

115.不同的子序列

115.不同的子序列

思路:

动态规划五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

  1. 确定递推公式

这一类问题,基本是要分析两种情况

  • s[i - 1] 与 t[j - 1]相等
  • s[i - 1] 与 t[j - 1] 不相等

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有录友不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

  1. dp数组如何初始化

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

在这里插入图片描述

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。
  1. 确定遍历顺序

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

在这里插入图片描述

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];} else {dp[i][j] = dp[i - 1][j];}}
}
  1. 举例推导dp数组

以s:“baegg”,t:"bag"为例,推导dp数组状态如下:

在这里插入图片描述

代码:

python

class Solution:def numDistinct(self, s: str, t: str) -> int:dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]for i in range(len(s)):dp[i][0] = 1for j in range(1, len(t)):dp[0][j] = 0for i in range(1, len(s)+1):for j in range(1, len(t)+1):if s[i-1] == t[j-1]:dp[i][j] = dp[i-1][j-1] + dp[i-1][j]else:dp[i][j] = dp[i-1][j]return dp[-1][-1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/38869.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniApp引入vant2

uniApp引入vant2 1、cnpm 下载&#xff1a;cnpm i vantlatest-v2 -S2、main.js文件引入 import Vant from ./node_modules/vant/lib/vant;Vue.use(Vant);3.app.vue中引入vant 样式文件 import /node_modules/vant/lib/index.css;

tomcat服务七层搭建动态页面查看

一个服务器多实例复制完成 配置tomcat多实例的环境变量 vim /etc/profile.d/tomcat.sh配置tomcat1和tomcat2的环境变量 进入tomcat1修改配置 测试通信端口是否正常 连接正常 toncat 2 配置修改 修改这三个 端口配置修改完成 修改tomcat1 shudown 分别把启动文件指向tomcat1…

数据结构--最短路径 Dijkstra算法

数据结构–最短路径 Dijkstra算法 Dijkstra算法 计算 b e g i n 点到各个点的最短路 \color{red}计算\ begin\ 点到各个点的最短路 计算 begin 点到各个点的最短路 如果是无向图&#xff0c;可以先把无向图转化成有向图 我们需要2个数组 final[] &#xff08;标记各顶点是否已…

RunnerGo的相比较JMeter优势,能不能替代?

目前在性能测试领域市场jmeter占有率是非常高的&#xff0c;主要原因是相对比其他性能测试工具使用更简单&#xff08;开源、易扩展&#xff09;&#xff0c;功能更强大&#xff08;满足多种协议的接口&#xff09;&#xff0c;但是随着研发协同的升级&#xff0c;平台化的性能…

主流的嵌入式微处理器

目前主流的嵌入式微处理器系列有&#xff1a; ARM系列 MIPS系列 PowerPC系列 Super H系列 一、MPC/PPC系列 PowerPC(简称PPC),其基本设计源自IBM的POWER.1991年&#xff0c;APPLE(苹果电脑)、IBM、Motorola&#xff08;摩托罗拉&#xff09;组成的AIM联盟发展出Power微处理器…

mybatis-plus 根据指定字段 批量 删除/修改

mybatis-plus 提供了根据id批量更新和修改的方法,这个大家都不陌生 但是当表没有id的时候怎么办 方案一: 手写SQL方案二: 手动获取SqlSessionTemplate 就是把mybatis plus 干的事自己干了方案三 : 重写 executeBatch 方法结论: mybatis-plus 提供了根据id批量更新和修改的方法,…

网络编程(8.15)io模型,IO多路复用(select,poll)

1.使用select函数实现IO多路复用 使用select函数实现IO多路复用的服务器&#xff1a; #include<stdio.h> #include<head.h> #include<netinet/in.h> #include<sys/select.h> #include<arpa/inet.h> #define PROT 1112 #define IP "192.16…

29 | 广州美食店铺数据分析

广州美食店铺数据分析 一、数据分析项目MVP加/价值主张宣言 随着经济的快速发展以及新媒体的兴起,美食攻略、美食探店等一系列东西进入大众的眼球,而人们也会在各大平台中查找美食推荐,因此本项目做的美食店铺数据分析也是带有可行性的。首先通过对广东省的各市美食店铺数量…

对话即数据分析,网易数帆ChatBI做到了

大数据产业创新服务媒体 ——聚焦数据 改变商业 在当今数字化快速发展的时代&#xff0c;数据已经成为业务经营与管理决策的核心驱要素。无论是跨国大企业还是新兴创业公司&#xff0c;正确、迅速地洞察数据已经变得至关重要。然而&#xff0c;传统的BI工具往往对用户有一定的…

初步认识OSI/TCP/IP一(第三十八课)

1 初始OSI模型 OSI参考模型(Open Systems Interconnection Reference Model)是一个由国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)联合制定的网络通信协议规范,它将网络通信分为七个不同的层次,每个层次负责不同的功能和任务。 2 网络功能 数据通信、资源共享…

MTK Android非常用分辨率修改充电动画

非标准分辨率的屏,配置MTK Android的关机充电动画. 环境 芯片 MTK 系统 Android 服务器 ubuntu 屏幕分辨率356*400,不是常见的分辨率. 原始充电动画显示异常,画面扭曲. 方法 确定使用的图片 vendor/mediatek/proprietary/bootable/bootloader/lk/dev/logo 这个目录下…

springboot多模块打包方式

明确子父模块结构 父目录是带modules 大致结构如下&#xff1a; <modules><module>ruoyi-admin</module><module>ruoyi-framework</module><module>ruoyi-system</module><module>ruoyi-quartz</module><module>…

htmlCSS-----高级选择器

目录 前言 伪类选择器 状态类 结构类 伪元素选择器 属性选择器 前言 前面我们学习了CSS中的相关选择器&#xff08;链接html&CSS-----CSS选择器&#xff08;上&#xff09;_灰勒塔德的博客-CSDN博客 html&CSS-----CSS选择器&#xff08;下&#xff09;_灰勒塔…

计算机视觉中的Transformer

几十年来&#xff0c;理论物理学家一直在努力提出一个宏大的统一理论。通过统一&#xff0c;指的是将被认为是完全不同的两个或多个想法结合起来&#xff0c;将它们的不同方面证明为同一基础现象。一个例子是在19世纪之前&#xff0c;电和磁被看作是无关的现象&#xff0c;但电…

【大数据之Kafka】三、Kafka生产者之消息发送流程及同步异步发送API

将外部传送给过来的数据发送到kafka集群。 1 发送原理 &#xff08;1&#xff09;创建main()线程&#xff0c;创建producer对象&#xff0c;调用send方法&#xff0c;经过拦截器&#xff08;可选&#xff09;、序列化器、分区器。 &#xff08;2&#xff09;分区器将数据发送…

【Android Framework (十二) 】- 智能硬件设备开发

文章目录 前言智能硬件的定义与应用智能硬件产品开发流程智能硬件开发所涉及的技术体系概述关于主板选型主板CPU芯片的选择关于串口通信 总结 前言 针对我过往工作经历&#xff0c;曾在一家智能科技任职Android开发工程师&#xff0c;简单介绍下关于任职期间接触和开发过的一些…

DDPM: Denoising Diffusion Probabilistic Models

DDPM: Denoising Diffusion Probabilistic Models 去噪扩散模型前向过程-加噪声反向过程-去噪声 去噪扩散模型 论文题目&#xff1a;Denoising Diffusion Probabilistic Models (DDPM) 论文来源&#xff1a;NIPS, 2020 论文地址&#xff1a;https://arxiv.org/abs/2006.11239 论…

13.3 目标检测和边界框

锚框的计算公式 假设原图的高为H,宽为W 详细公式推导 以同一个像素点为锚框&#xff0c;可以生成 (n个缩放 m个宽高比 -1 )个锚框 锚框的作用&#xff1a; 不用直接去预测真实框的四个坐标&#xff0c;而是&#xff1a; 1.先生成多个锚框。 2.预测每个锚框里是否含有要预测…

【Linux】【驱动】杂项设备驱动

【Linux】【驱动】杂项设备驱动 Linux三大设备驱动1. 我们这节课要讲的杂项设备驱动是属于我们这三大设备驱动里面的哪个呢?2.杂项设备除了比字符设备代码简单&#xff0c;还有别的区别吗?3.主设备号和次设备号是什么? 挂载驱动 杂项设备驱动是字符设备驱动的一种&#xff0…

小程序制作教程:从零开始搭建企业小程序

在如今的数字化时代&#xff0c;企业介绍小程序成为了企业展示与推广的重要工具。通过企业介绍小程序&#xff0c;企业可以向用户展示自己的品牌形象、产品服务以及企业文化等内容&#xff0c;进而提高用户对企业的认知度和信任度。本文将介绍如何从零开始搭建一个企业介绍小程…