vue domo网站_DOMO与Tableau-逐轮

vue domo网站

Let me be your BI consultant. Best yet, let me be your free consultant on the following question:

让我成为您的BI顾问。 最好的是,让我成为您的免费顾问 ,解决以下问题:

DOMO vs. Tableau — What should I use?

DOMO vs. Tableau-我应该使用什么?

I’ve had the privilege of working in both BI tools, and I can say that both platforms have their strengths and weaknesses.

我曾经有过使用这两种BI工具的特权,我可以说这两种平台都有其优点和缺点。

Tableau is definitely more widely used than DOMO, but is that because it is better than DOMO? On the other hand, DOMO has an insane and almost cult-like following with events like its yearly DOMOpalooza, but is it better than Tableau?

Tableau肯定比DOMO用途更广泛,但这是因为它比DOMO更好吗? 另一方面,DOMO像其每年的DOMOpalooza这样的事件都有疯狂的,几乎是邪教般的追随者 ,但是它比Tableau好吗?

Time to hash this out. Gloves on. Let’s make this a clean fight.

是时候解决这个问题了。 戴上手套。 让我们进行一场干净的战斗。

Data consultants, are you ready?

数据顾问,您准备好了吗?

Let’s Go!

我们走吧!

第一轮:连接到数据源 (Round 1: Connecting to Datasources)

Winner: DOMO — No Contest

获奖者: DOMO-无比赛

No contest. DOMO wins hands with its 1K+ data connectors. Tableau has the main integrations that you’ll want like Excel, Salesforce, PostgreSQL and such, but DOMO just has a MASSIVE amount of supported connections.

没有比赛。 DOMO凭借其1K +数据连接器获胜。 Tableau具有您想要的主要集成 ,如Excel,Salesforce,PostgreSQL等,但是DOMO仅有大量支持的连接。

Easy. Round 1 to DOMO.

简单。 第一轮进入DOMO。

第二轮:易用性 (Round 2: Ease of Use)

Winner: DOMO — Close Win

获胜者: DOMO —接近胜利

Tableau and DOMO are pretty user friendly, and you can easily connect your data sets and get creating dashboards quickly.

Tableau和DOMO非常易于使用,您可以轻松连接数据集并快速创建仪表板。

Both platforms provide point-and-click functionality and don’t require you to know how to do code, and both provide coding capabilities with SQL.

两种平台都提供了点击功能,并且不需要您知道如何编写代码,并且都提供了SQL编码功能。

I found Tableau’s online dashboard creator to be a little clunky and hard to maneuver. DOMO’s cards and dashboards are just easier to manipulate in dashboards, and its stories capability just takes it over the line.

我发现Tableau的在线仪表板创建者有些笨拙且难以操纵。 DOMO的卡片和仪表板更易于在仪表板中进行操作,其故事功能使它更容易使用。

第三回合:合并和清理数据 (Round 3: Combining and Cleaning Data)

Winner: DOMO

获奖者: DOMO

DOMO has an amazing ability to combine expert and easy to use ETL and data flow visualizations without requiring the user to know how to code in SQL. But if you want to get deep into your SQL joins and data cleaning, DOMO provides a nice MySQL workspace where you can do exactly what you want with your datasets.

DOMO具有将专家级和易于使用的ETL和数据流可视化相结合的惊人能力,而无需用户知道如何用SQL进行编码。 但是,如果您想深入了解SQL连接和数据清理,DOMO提供了一个不错MySQL工作区,您可以在其中精确地执行数据集所需的工作。

DOMO also provides Beast Mode functions where you can do SQL functions like CASE WHEN queries to clean data right on a chart on a dashboard. It’s super neat, and I love it!

DOMO还提供了“野兽模式”功能,您可以在其中执行诸如CASE WHEN查询之类SQL功能,以清除仪表板上图表上的数据。 超级整洁,我喜欢它!

Beasty Beast Mode!
野兽野兽模式!

Tableau does have the ability to do SQL functions right on a chart, but it’s not as nice. It also has Tableau Prep Builder, but it is not as clean as DOMO’s user interface. In addition, I found that to do a lot of the data cleaning and matching between datasets, you’re going to need another add-on platform called Alteryx to really do all of what DOMO can do. Alteryx looks like a great platform as well, but it’s a whole other software that you’ll have to purchase to make Tableau function like DOMO.

Tableau确实可以在图表上执行SQL函数,但是效果不佳。 它还具有Tableau Prep Builder ,但不如DOMO的用户界面那么干净。 此外,我发现要在数据集之间进行大量数据清理和匹配,您将需要另一个名为Alteryx的附加平台来真正完成DOMO可以完成的所有工作。 Alteryx看起来也像是一个不错的平台,但是要使Tableau功能像DOMO一样,您还必须购买它是一整套其他软件。

In short, DOMO’s Magic ETL and Beast Mode features are more fun to use than Tableau’s. #roundtoDOMO

简而言之,与Tableau相比,DOMO的Magic ETL和Beast Mode功能更有趣。 #roundtoDOMO

第四轮:数据科学深潜 (Round 4: Data Science Deep Dives)

Winner: Draw — R Plugin Functionalities

获胜者: Draw — R插件功能

This is where you make data scientists super happy. Both Tableau and DOMO connect directly to R, sending data to and from your favorite R development platform. What you can do with this is functionality is AMAZING!

这是让数据科学家超级高兴的地方。 Tableau和DOMO都直接连接到R,并与您喜欢的R开发平台之间发送数据。 您所能做的就是功能惊人!

Got year-by-year customer data and want to know who is most likely to purchase a new product based on past purchasing history? R is the place to do that analysis, process the predictions, and send the data to be presented in a Tableau/DOMO dashboard. When I did this in with DOMO, I used R Studio and had a data-wowing time.

获得逐年的客户数据,并想根据过去的购买历史来了解谁最有可能购买新产品? R是进行分析,处理预测并发送要在Tableau / DOMO仪表板中呈现的数据的地方。 当我使用DOMO进行此操作时,我使用了R Studio,并且数据时间很长。

第五轮:公共数据和使用的仪表板 (Round 5: Dashboards for Public Data and Usage)

Winner: Tableau — No Contest

优胜者: Tableau-无比赛

Tableau has a free tool called Tableau Public where you can easily create and share your dashboards on public websites via their embed features. Free. Easy to set up. You just have to commit to the data being consumed publicly, so don’t publish your private data here!

Tableau有一个名为Tableau Public的免费工具,您可以在其中通过其嵌入功能在公共网站上轻松创建和共享仪表板。 自由。 易于设置。 您只需要承诺公开使用的数据,因此不要在此处发布您的私人数据!

As it currently stands, DOMO isn’t truly meant for publicly sharing data. It does have features like DOMO Everywhere and embeded cards enabling the public sharing of data, but from what I understand, it can’t compete with Tableau Public’s $0 price tag.

就目前而言,DOMO并不是真正意义上的公开共享数据。 它确实具有DOMO Everywhere之类的功能,并且具有可公开共享数据的嵌入式卡 ,但是据我了解,它无法与Tableau Public的$ 0价格标签竞争。

In short, if you’re sharing your data publicly, use Tableau Public or Google Data Studio.

简而言之,如果您要公开共享数据,请使用Tableau Public或Google Data Studio 。

第六轮:价格 (Round 6: Price)

Winner: Tableau — No Contest

优胜者: Tableau-无比赛

This is the kicker.

这就是踢腿。

DOMO’s price is not for the faint of heart, and they really don’t share their pricing model. But from what I’ve read online about the starter plan from 2018, you’re looking at about $6K for 5 users. For their premium plans, you’re looking at $20K+.

DOMO的价格不适合胆小者,而且他们确实不共享其定价模型。 但是从我在线阅读的关于2018年的入门计划的内容来看,您需要为5个用户支付约6,000美元。 对于他们的高级计划,您需要花费2万美元以上。

DOMO is a thoroughbred racehorse, no question. You pay for a great platform, you get a great platform.

毫无疑问,DOMO是一匹纯种赛马。 您为一个出色的平台付费,就得到一个出色的平台。

Tableau charges $70/user for creators and $35/user for other analytics users (min of 5 users). This in comparison with DOMO’s 2018 standard plan reported prices would be about half the cost ($2.9K).

Tableau对创建者收费70美元/用户,对其他分析用户收费5美元/用户(至少5个用户)。 与DOMO的2018年标准计划报告的价格相比,这大约是成本的一​​半(2.9K美元)。

战斗获胜者:DOMO,如果您拥有硬币… (Fight Winner: DOMO, if you have the coin…)

I’ll be honest; I’m a little biased towards DOMO here because its such a dream to work with, but it really is an enterprise-level software that only organizations with larger pockets can purchase. It probably will be price-exclusive for the near future because it is more of a niche player, but maybe it will drop its price in the future and open its market appeal.

我会说实话 我在这里对DOMO有点偏见,因为可以实现它的梦想,但这确实是一种企业级软件,只有大笔钱的组织才能购买。 它可能在不久的将来是价格专有的,因为它更像是一个利基市场,但也许它将在未来降低价格并打开其市场吸引力。

Tableau is a great option, and it’s also super awesome to work with. It shines with Tableau Public and how quick it is to get off the ground, but it requires additional tools and isn’t as user-friendly as DOMO.

Tableau是一个不错的选择,并且使用起来也很棒。 Tableau Public令人赞叹不已,它起步的速度非常快,但它需要其他工具,并且不像DOMO那样易于使用。

TL;DR: If you have the budget, get DOMO. If you’re on a budget, Tableau works great. If you need free, Google Data Studio #forthewin!

TL; DR:如果您有预算,请获取DOMO。 如果您预算有限,Tableau的效果很好。 如果需要免费,请使用Google Data Studio #forthewin!

Note: I nor my data consulting company was compensated by DOMO or Tableau for this article. I just want to help other data scientists and companies have better insight in both platforms from an end-user perspective. Information can be hard to compare between the tools, and I hope my first-hand experience and analysis of both platforms can help inform your BI decision.

注意: 我和我的 数据咨询公司 没有 获得DOMO或Tableau的赔偿。 我只是想帮助其他数据科学家和公司从最终用户的角度更好地了解这两个平台。 这些工具之间的信息很难进行比较,我希望我对这两个平台的第一手经验和分析能够帮助您做出BI决策。

翻译自: https://medium.com/swlh/domo-vs-tableau-round-by-round-18aae0d6bf60

vue domo网站

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/387931.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

fiddler抓包1-抓小程序https包

抓小程序包和抓app包是一样的操作方法;安卓用fiddler,ios用charles; 一、环境准备 1.电脑已装最新版fiddler 2.手机和电脑在同一局域网 二、fiddler设置 1.fiddler>Tools>Options>HTTPS 勾选Capture HTTPS CONNECTs 及下边的子项&am…

多态使用的前提

1:必须是继承(extends),实现(implements) 才行2:必须要重写(覆盖)父类的方法。转载于:https://www.cnblogs.com/liyunchuan/p/10663788.html

Linux下的 FTP

1.安装vsftpd yum install vsftpd 2.启动/重启/关闭vsftpd服务器 [rootlocalhost ftp]# /sbin/service vsftpd restart Shutting down vsftpd: [ OK ] Starting vsftpd for vsftpd: [ OK ] OK表示重启成功了. 启动和关闭分别把restart改为start/stop即可. 如果是源码安装的,到…

python入门23 pymssql模块(python连接sql server增删改数据 )

增删改数据必须connect.commit()才会生效 回滚函数 connect.rollback() 连接数据库 dinghanhua sql server增删改 import pymssqlserver 192.168.1.1 user user password 111111 database testdbconnect pymssql.connect(server server,user user,passwordpassword,da…

每个人都应该使用的Python 3中被忽略的3个功能

重点 (Top highlight)Python 3 has been around for a while now, and most developers — especially those picking up programming for the first time — are already using it. But while plenty of new features came out with Python 3, it seems like a lot of them ar…

iframe自适应高度

为什么需要使用iframe自适应高度呢?其实就是为了美观,要不然iframe和窗口长短大小不一,看起来总是不那么舒服,特别是对于我们这些编程的来说,如鲠在喉的感觉。 首先设置样式 body{margin:0; padding:0;} 如果不设置bod…

.Net转Java自学之路—SpringMVC框架篇八(RESTful支持)

RESTful架构,REST即Representational State Transfer。表现层状态转换,就是目前最流行的一种互联网软件架构。它结构清晰、符合标准、易于理解、扩展方便,所以得到越来越多网站的采用。 RESTful其实就是一个开发理念,是对http的很…

冲刺第七天

今天任务进行情况:今天我们将我们的游戏导到界面形成可用的应用程序,并且进行调试与运行,让同学试玩,发现了困难并加以改正。 遇到的困难及解决方法: 运行时发现游戏界面中UI的button和image的位置会随分辨率的不同而发…

数据探查_数据科学家,开始使用探查器

数据探查Data scientists often need to write a lot of complex, slow, CPU- and I/O-heavy code — whether you’re working with large matrices, millions of rows of data, reading in data files, or web-scraping.数据科学家经常需要编写许多复杂,缓慢&…

Node.js Streams:你需要知道的一切

Node.js Streams:你需要知道的一切 图像来源 Node.js流以难以使用而闻名,甚至更难理解。好吧,我有个好消息 - 不再是这样了。 多年来,开发人员在那里创建了许多软件包,其唯一目的是简化流程。但在本文中,我…

oracle表分区

1.表空间:是一个或多个数据文件的集合,主要存放的是表,所有的数据对象都存放在指定的表空间中;一个数据文件只能属于一个表空间,一个数据库空间由若干个表空间组成,其中包括:a.系统表空间:10g以前,默认系统表空间是System,10g包括10g以后,默认系统表空间是User,存放数据字典和视…

oracle异机恢复 open resetlogs 报:ORA-00392

参考文档:ALTER DATABASE OPEN RESETLOGS fails with ORA-00392 (Doc ID 1352133.1) 打开一个克隆数据库报以下错误: SQL> alter database open resetlogs; alter database open resetlogs * ERROR at line 1: ORA-00392: log 1 of thread 1 is being…

从ncbi下载数据_如何从NCBI下载所有细菌组件

从ncbi下载数据One of the most important steps in genome analysis is gathering the data required for downstream research. This sometimes requires us to have the assembled reference genomes (mostly bacterial) so we can verify the classifiers trained or bins …

shell之引号嵌套引号大全

万恶的引号 这个能看懂你就出师了! 转载于:https://www.cnblogs.com/theodoric008/p/10000480.html

oracle表分区详解

oracle表分区详解 从以下几个方面来整理关于分区表的概念及操作: 表空间及分区表的概念表分区的具体作用表分区的优缺点表分区的几种类型及操作方法对表分区的维护性操作 1.表空间及分区表的概念 表空间: 是一个或多个数据文件的集合,所有的数据对象都存…

线性插值插值_揭秘插值搜索

线性插值插值搜索算法指南 (Searching Algorithm Guide) Prior to this article, I have written about Binary Search. Check it out if you haven’t seen it. In this article, we will be discussing Interpolation Search, which is an improvement of Binary Search when…

其他命令

keys *这个可以全部的值del name 这个可以删除某个127.0.0.1:6379> del s_set(integer) 1127.0.0.1:6379> keys z*(匹配)1) "z_set2"2) "z_set"127.0.0.1:6379> exists sex(integer) 0 127.0.0.1:6379> get a"3232…

建按月日自增分区表

一、建按月自增分区表: 1.1建表SQL> create table month_interval_partition_table (id number,time_col date) partition by range(time_col)2 interval (numtoyminterval(1,month))3 (4 partition p_month_1 values less than (to_date(2014-01-01,yyyy-mm…

#1123-JSP隐含对象

JSP 隐含对象 JSP隐含对象是JSP容器为每个页面提供的Java对象,开发者可以直接使用它们而不用显式声明。JSP隐含对象也被称为预定义变量。 JSP所支持的九大隐含对象: 对象,描述 request,HttpServletRequest类的实例 response&#…

按照时间,每天分区;按照数字,200000一个分区

按照时间,每天分区 create table test_p(id number,createtime date) partition by range(createtime) interval(numtodsinterval(1,day)) store in (users) ( partition test_p_p1 values less than(to_date(20140110,yyyymmdd)) ); create index index_test_p_id …