数据探查
Data scientists often need to write a lot of complex, slow, CPU- and I/O-heavy code — whether you’re working with large matrices, millions of rows of data, reading in data files, or web-scraping.
数据科学家经常需要编写许多复杂,缓慢,CPU和I / O繁重的代码-无论您是使用大型矩阵,数百万行数据,读取数据文件还是网络抓取。
Wouldn’t you hate to waste your time refactoring one section of your code, trying to wring out every last ounce of performance, when a few simple changes to another section could speed up your code tenfold?
当对另一部分进行一些简单的更改可以使您的代码速度提高十倍时,您是否不愿意浪费您的时间来重构代码的一部分,试图浪费每一刻的性能呢?
If you’re looking for a way to speed up your code, a profiler can show you exactly which parts are taking the most time, allowing you to see which sections would benefit most from optimization.
如果您正在寻找一种加快代码速度的方法,则探查器可以准确地向您显示哪些部分花费的时间最多,从而使您可以查看哪些部分将从优化中受益最大。
A profiler measures the time or space complexity of a program. There’s certainly value in theorizing about the big O complexity of an algorithm but it can be equally valuable to examine the real complexity of an algorithm.
探查器测量程序的时间或空间复杂度。 对算法的O复杂度进行理论化肯定具有价值,但检查算法的实际复杂度同样有价值。
Where is the biggest slowdown in your code? Is your code I/O bound or CPU bound? Which specific lines are causing the slowdowns?
您的代码中最慢的地方在哪里? 是代码 I / O绑定还是CPU绑定 ? 哪些特定的行导致了速度下降?
Once you’ve answered those questions you’ll A) have a better understanding of your code and B) know where to target your optimization efforts in order to get the biggest boon with the least effort.
回答完这些问题后,您将A)对您的代码有更好的了解,B)知道在哪里进行优化工作,以便以最少的努力获得最大的收益。
Let’s dive into some quick examples using Python.
让我们来看一些使用Python的快速示例。
基础 (The Basics)
You might already be familiar with a few methods of timing your code. You could check the time before and after a line executes like this:
您可能已经熟悉几种计时代码的方法。 您可以像这样检查行执行前后的时间:
In [1]: start_time = time.time()
...: a_function() # Function you want to measure
...: end_time = time.time()
...: time_to_complete = end_time - start_time
...: time_to_complete
Out[1]: 1.0110783576965332
Or, if you’re in a Jupyter Notebook, you could use the magic %time
command to time the execution of a statement, like this:
或者,如果您在Jupyter Notebook中,则可以使用不可思议的%time
命令来计时语句的执行时间,如下所示:
In [2]: %time a_function()
CPU times: user 14.2 ms, sys: 41 µs, total: 14.2 ms
Wall time: 1.01 s
Or, you could use the other magic command %timeit
which gets a more accurate measurement by running the command multiple times, like this:
或者,您可以使用另一个魔术命令%timeit
,它可以通过多次运行该命令来获得更准确的测量结果,如下所示:
In [3]: %timeit a_function()
1.01 s ± 1.45 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Alternatively, if you want to time your whole script, you can use the bash command time
, like so…
另外,如果您想对整个脚本进行计时,则可以使用bash命令time
,就像这样……
$ time python my_script.py
real 0m1.041s
user 0m0.040s
sys 0m0.000s
These techniques are great if you want to get a quick sense of how long a script or a section of code takes to run but they are less useful when you want a more comprehensive picture. It would be a nightmare if you had to wrap each line in time.time()
checks. In the next section, we’ll look at how to use Python’s built-in profiler.
如果您想快速了解脚本或一段代码要花多长时间,这些技术非常有用,但是当您想要更全面的了解时,它们就没什么用处了。 如果必须在time.time()
检查中包装每一行,那将是一场噩梦。 在下一节中,我们将研究如何使用Python的内置事件探查器。
使用cProfile深入了解 (Diving Deeper with cProfile)
When you’re trying to get a better understanding of how your code is running, the first place to start is cProfile, Python’s built-in profiler. cProfile will keep track of how often and for how long parts of your program were executed.
当您试图更好地了解代码的运行方式时,第一个开始的地方是cProfile ,它是Python的内置探查器。 cProfile将跟踪程序的执行频率和执行时间。
Just keep in mind that cProfile shouldn’t be used to benchmark your code. It’s written in C which makes it fast but it still introduces some overhead that could throw off your times.
请记住,不应将cProfile用作基准测试代码。 它是用C语言编写的,虽然速度很快,但仍然会带来一些开销,这可能会打乱您的时间。
There are multiple ways to use cProfile but one simple way is from the command line.
使用cProfile的方法有多种,但一种简单的方法是从命令行使用。
Before we demo cProfile, let’s start by looking at a basic sample program that will download some text files, count the words in each one, and then save the top 10 words from each to a file. Now that being said, it isn’t too important what the code does, just that we’ll be using it to show how the profiler works.
在演示cProfile之前,我们先来看一个基本的示例程序,该程序将下载一些文本文件,计算每个文本文件中的单词,然后将每个单词中的前10个单词保存到文件中。 话虽如此,代码的功能并不太重要,只是我们将使用它来展示事件探查器的工作方式。
Now, with the following command, we’ll profile our script.
现在,使用以下命令,我们将分析脚本。
$ python -m cProfile -o profile.stat script.py
The -o
flag specifies an output file for cProfile to save the profiling statistics.
-o
标志为cProfile指定一个输出文件,以保存性能分析统计信息。
Next, we can fire up python to examine the results using the pstats module (also part of the standard library).
接下来,我们可以使用pstats模块(也是标准库的一部分)启动python来检查结果。
In [1]: import pstats
...: p = pstats.Stats("profile.stat")
...: p.sort_stats(
...: "cumulative" # sort by cumulative time spent
...: ).print_stats(
...: "script.py" # only show fn calls in script.py
...: )Fri Aug 07 08:12:06 2020 profile.stat46338 function calls (45576 primitive calls) in 6.548 secondsOrdered by: cumulative time
List reduced from 793 to 6 due to restriction <'script.py'>ncalls tottime percall cumtime percall filename:lineno(function)
1 0.008 0.008 5.521 5.521 script.py:1(<module>)
1 0.012 0.012 5.468 5.468 script.py:19(read_books)
5 0.000 0.000 4.848 0.970 script.py:5(get_book)
5 0.000 0.000 0.460 0.092 script.py:11(split_words)
5 0.000 0.000 0.112 0.022 script.py:15(count_words)
1 0.000 0.000 0.000 0.000 script.py:32(save_results)
Wow! Look at all that useful info!
哇! 查看所有有用的信息!
For each function called, we’re seeing the following information:
对于每个调用的函数,我们都会看到以下信息:
ncalls
: number of times the function was calledncalls
:调用函数的次数tottime
: total time spent in the given function (excluding calls to sub-functions)tottime
:在给定功能上花费的总时间(不包括对子功能的调用)percall
:tottime
divided byncalls
percall
:tottime
除以ncalls
cumtime
: total time spent in this function and all sub-functionscumtime
:此功能和所有子功能所花费的总时间percall
: (again)cumtime
divided byncalls
percall
:(再次)cumtime
除以ncalls
filename:lineo(function)
: the file name, line number, and function namefilename:lineo(function)
:文件名,行号和函数名
When reading this output, note the fact that we’re hiding a lot of data —in fact, we’re only seeing 6 out of 793 rows. Those hidden rows are all the sub-functions being called from within functions like urllib.request.urlopen
or re.split
. Also, note that the <module>
row corresponds to the code in script.py
that isn’t inside a function.
在读取此输出时,请注意以下事实:我们隐藏了很多数据-实际上,在793行中,我们仅看到6。 这些隐藏的行是从诸如urllib.request.urlopen
或re.split
之类的函数中调用的所有re.split
。 另外,请注意<module>
行对应于script.py
中不在函数内的代码。
Now let’s look back at the results, sorted by cumulative duration.
现在,让我们回顾一下按累积持续时间排序的结果。
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.008 0.008 5.521 5.521 script.py:1(<module>)
1 0.012 0.012 5.468 5.468 script.py:19(read_books)
5 0.000 0.000 4.848 0.970 script.py:5(get_book)
5 0.000 0.000 0.460 0.092 script.py:11(split_words)
5 0.000 0.000 0.112 0.022 script.py:15(count_words)
1 0.000 0.000 0.000 0.000 script.py:32(save_results)
Keep in mind the hierarchy of function calls. The top-level, <module>
, calls read_books
and save_results.
read_books
calls get_book
, split_words
, and count_words
. By comparing cumulative times, we see that most of <module>
’s time is spent in read_books
and most of read_books
’s time is spent in get_book
, where we make our HTTP request, making this script (unsurprisingly) I/O bound.
请记住函数调用的层次结构。 顶层<module>
调用read_books
和save_results.
read_books
调用get_book
, split_words
和count_words
。 通过比较累积时间,我们可以看到<module>
的大部分时间都花在了read_books
而大多数read_books
的时间都花在了get_book
,我们在这里进行HTTP请求,从而使该脚本( 毫不奇怪 )受I / O约束。
Next, let’s take a look at how we can be even more granular by profiling our code line-by-line.
接下来,让我们看看如何通过逐行分析代码来使粒度更细。
逐行分析 (Profiling Line-by-Line)
Once we’ve used cProfile to get a sense of what function calls are taking the most time, we can examine those functions line-by-line to get an even clearer picture of where our time is being spent.
一旦使用cProfile来了解哪些函数调用花费了最多的时间,我们就可以逐行检查这些函数,以更清楚地了解我们的时间花在哪里。
For this, we’ll need to install the line-profiler
library with the following command:
为此,我们需要使用以下命令安装line-profiler
库:
$ pip install line-profiler
Once installed, we just need to add the @profile
decorator to the function we want to profile. Here’s the updated snippet from our script:
安装完成后,我们只需要将@profile
装饰器添加到我们要分析的函数中即可。 这是脚本中的更新片段:
Note the fact that we don’t need to import the profile
decorator function — it will be injected by line-profiler
.
请注意,我们不需要导入profile
装饰器功能,它将由line-profiler
注入。
Now, to profile our function, we can run the following:
现在,要分析我们的功能,我们可以运行以下命令:
$ kernprof -l -v script-prof.py
kernprof
is installed along with line-profiler
. The -l
flag tells line-profiler
to go line-by-line and the -v
flag tells it to print the result to the terminal rather than save it to a file.
kernprof
与line-profiler
一起安装。 -l
标志告诉line-profiler
逐行进行, -v
标志告诉它将结果打印到终端,而不是将其保存到文件。
The result for our script would look something like this:
我们的脚本的结果如下所示:
The key column to focus on here is % Time
. As you can see, 89.5% of our time parsing each book is spent in the get_book
function — making the HTTP request — further validation that our program is I/O bound rather than CPU bound.
这里要重点关注的关键列是% Time
。 如您所见,解析每本书的时间中有89.5%花费在get_book
函数(发出HTTP请求)中,这进一步验证了我们的程序是I / O绑定而不是CPU绑定。
Now, with this new info in mind, if we wanted to speed up our code we wouldn’t want to waste our time trying to make our word counter more efficient. It only takes a fraction of the time compared to the HTTP request. Instead, we’d focus on speeding up our requests — possibly by making them asynchronously.
现在,有了这些新信息,如果我们想加快代码的速度,我们就不会浪费时间试图使我们的单词计数器更有效。 与HTTP请求相比,它只花费一小部分时间。 取而代之的是,我们将专注于加快我们的请求-可能通过使其异步进行。
Here, the results are hardly surprising, but on a larger and more complicated program, line-profiler
is an invaluable tool in our programming tool belt, allowing us to peer under the hood of our program and find the computational bottlenecks.
在这里,结果不足为奇,但是在更大,更复杂的程序上, line-profiler
是我们编程工具带中的宝贵工具,它使我们能够窥视程序的底层并找到计算瓶颈。
分析内存 (Profiling Memory)
In addition to profiling the time-complexity of our program, we can also profile its memory-complexity.
除了分析程序的时间复杂度之外,我们还可以分析其内存复杂度。
In order to do line-by-line memory profiling, we’ll need to install the memory-profiler
library which also uses the same @profile
decorator to determine which function to profile.
为了进行逐行内存分析,我们需要安装memory-profiler
库,该库也使用相同的@profile
装饰器来确定要分析的函数。
$ pip install memory-profiler$ python -m memory_profiler script.py
The result of running memory-profiler
on our same script should look something like the following:
在同一脚本上运行memory-profiler
的结果应类似于以下内容:
There are currently some issues with the accuracy of the “Increment” so just focus on the “Mem usage” column for now.
当前,“增量”的准确性存在一些问题 ,因此暂时仅关注“内存使用量”列。
Our script had peak memory usage on line 28 when we split the books up into words.
当我们将书分成单词时,脚本在第28行的内存使用量达到峰值。
结论 (Conclusion)
Hopefully, now you’ll have a few new tools in your programming tool belt to help you write more efficient code and quickly determine how to best spend your optimization-time.
希望您现在在编程工具带中拥有一些新工具,可以帮助您编写更有效的代码并快速确定如何最佳地利用优化时间。
You can read more about cProfile here, line-profiler here, and memory-profiler here. I also highly recommend the book High Performance Python, by Micha Gorelick and Ian Ozsvald [1].
你可以关于CPROFILE 这里 ,行探查这里 ,和内存分析器这里 。 我也强烈推荐Micha Gorelick和Ian Ozsvald [1]一书“ 高性能Python ”。
Thanks for reading! I’d love to hear your thoughts on profilers or data science or anything else. Comment below or reach out on LinkedIn or Twitter!
谢谢阅读! 我很想听听您对分析器或数据科学或其他方面的想法。 在下面发表评论,或在 LinkedIn 或 Twitter上联系 !
翻译自: https://towardsdatascience.com/data-scientists-start-using-profilers-4d2e08e7aec0
数据探查
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/387922.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!