Storm教程1理论介绍


流式计算的历史:

    早在7、8年前诸如UC伯克利、斯坦福等大学就开始了对流式数据处理的研究,但是由于更多的关注于金融行业的业务场景或者互联网流量监控的业务场景,以及当时互联网数据场景的限制,造成了研究多是基于对传统数据库处理的流式化,对流式框架本身的研究偏少。目前这样的研究逐渐没有了声音,工业界更多的精力转向了实时数据库。
    2010年Yahoo!对S4的开源,2011年twitter对Storm的开源,改变了这个情况。以前互联网的开发人员在做一个实时应用的时候,除了要关注应用逻辑计算处理本身,还要为了数据的实时流转、交互、分布大伤脑筋。但是现在情况却大为不同,以Storm为例,开发人员可以快速的搭建一套健壮、易用的实时流处理框架,配合SQL产品或者NoSQL产品或者MapReduce计算平台,就可以低成本的做出很多以前很难想象的实时产品:比如一淘数据部的量子恒道品牌旗下的多个产品就是构建在实时流处理平台上的。

——————————————————————————————————————

流式计算的最新进展:

   在数据处理时间和方式上,Storm与Hadoop MapReduce基本上是两个对立面,而这两个技术具备整合可能性极大程度该归结于YARN这个集群管理层。Hortonworks当下正在致力于通过新型处理框架Tez 来提高Hive的速度,同时YARN还允许Hadoop用户运行Spark内存处理框架。同时,微软也在使用YARN让Hadoop更加适合机器学习用例。

    此外,通过YARN,同集群上同时运行HBase、Giraph等不同技术也成为可能。此外,集群管理技术Mesos(加州大学伯克利分校出品,现已成为Apache项目) 同样支持了类似YARN功能,尽管其不是像YARN这样与HDFS捆绑。

    更多技术的整合预示Hadoop这个大数据处理平台绝不是昙花一现,同时也会让Hadoop在大数据应用程序领域获得更高的统治力。

——————————————————————————————————————

Storm的特点:
    Storm是一个开源的分布式实时计算系统,可以简单、可靠的处理大量的数据流。被称作“实时的hadoop”。Storm有很多使用场景:如实时分析,在线机器学习,持续计算,分布式RPC,ETL等等。Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快(在一个小集群中,每个结点每秒可以处理数以百万计的消息)。Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。

    编程模型简单:
    在大数据处理方面相信大家对hadoop已经耳熟能详,基于Google Map/Reduce来实现的Hadoop为开发者提供了map、reduce原语,使并行批处理程序变得非常地简单和优美。同样,Storm也为大数据的实时计算提供了一些简单优美的原语,这大大降低了开发并行实时处理的任务的复杂性,帮助你快速、高效的开发应用。
    
    可扩展:
    在Storm集群中真正运行topology的主要有三个实体:工作进程、线程和任务。Storm集群中的每台机器上都可以运行多个工作进程,每个工作进程又可创建多个线程,每个线程可以执行多个任务,任务是真正进行数据处理的实体,我们开发的spout、bolt就是作为一个或者多个任务的方式执行的。因此,计算任务在多个线程、进程和服务器之间并行进行,支持灵活的水平扩展。
    
    高可靠性:
    Storm可以保证spout发出的每条消息都能被“完全处理”,这也是直接区别于其他实时系统的地方,如S4。
    spout发出的消息后续可能会触发产生成千上万条消息,可以形象的理解为一棵消息树,其中spout发出的消息为树根,Storm会跟踪这棵消息树的处理情况,只有当这棵消息树中的所有消息都被处理了,Storm才会认为spout发出的这个消息已经被“完全处理”。如果这棵消息树中的任 何一个消息处理失败了,或者整棵消息树在限定的时间内没有“完全处理”,那么spout发出的消息就会重发。


    高容错性:
    如果在消息处理过程中出了一些异常,Storm会重新安排这个出问题的处理单元。Storm保证一个处理单元永远运行(除非你显式杀掉这个处理单元)。当然,如果处理单元中存储了中间状态,那么当处理单元重新被Storm启动的时候,需要应用自己处理中间状态的恢复。

    Storm集群和Hadoop集群表面上看很类似。
    Hadoop上运行的是MapReduce jobs,而在Storm上运行的是拓扑(topology);
    Hadoop擅长于分布式离线批处理,而Storm设计为支持分布式实时计算;
    Hadoop新的spark组件提供了在hadoop平台上运行storm的可能性

——————————————————————————————————————

Storm的基本概念:

在深入理解Storm之前,需要了解一些概念:
Topologies:拓扑,也俗称一个任务
Spouts:拓扑的消息源
Bolts:拓扑的处理逻辑单元
tuple:消息元组
Streams:流
Stream groupings:流的分组策略
Tasks:任务处理单元
Executor:工作线程
Workers:工作进程
Configuration:topology的配置

——————————————————————————————————————

Storm与Hadoop的对比:

Topology 与 Mapreduce 
一个关键的区别是: 一个MapReduce job最终会结束, 而一个topology永远会运行(除非你手动kill掉)

Nimbus 与 ResourManager
在Storm的集群里面有两种节点: 控制节点(master node)和工作节点(worker node)。控制节点上面运行一个叫Nimbus后台程序,它的作用类似Hadoop里面的JobTracker。Nimbus负责在集群里面分发代码,分配计算任务给机器,并且监控状态。

Supervisor (worker进程)与NodeManager(YarnChild)
每一个工作节点上面运行一个叫做Supervisor的节点。Supervisor会监听分配给它那台机器的工作,根据需要启动/关闭工作进程。每一个工作进程执行一个topology的一个子集;一个运行的topology由运行在很多机器上的很多工作进程组成。 

——————————————————————————————————————

Storm中的Nimbus和Supervisor
Nimbus和Supervisor之间的所有协调工作都是通过Zookeeper集群完成。
Nimbus进程和Supervisor进程都是快速失败(fail-fast)和无状态的。所有的状态要么在zookeeper里面,要么在本地磁盘上。
这也就意味着你可以用kill -9来杀死Nimbus和Supervisor进程,然后再重启它们,就好像什么都没有发生过。这个设计使得Storm异常的稳定。

——————————————————————————————————————

Storm中的Topologies
一个topology是spouts和bolts组成的图, 通过stream groupings将图中的spouts和bolts连接起来


——————————————————————————————————————

Storm中的Stream
消息流stream是storm里的关键抽象;
一个消息流是一个没有边界的tuple序列,而这些tuple序列会以一种分布式的方式并行地创建和处理;
通过对stream中tuple序列中每个字段命名来定义stream;
在默认的情况下,tuple的字段类型可以是:integer,long,short, byte,string,double,float,boolean和byte array;
可以自定义类型(只要实现相应的序列化器)。


——————————————————————————————————————

Storm中的Spouts
消息源spout是Storm里面一个topology里面的消息生产者;
一般来说消息源会从一个外部源读取数据并且向topology里面发出消息:tuple;
Spouts可以是可靠的也可以是不可靠的:如果这个tuple没有被storm成功处理,可靠的消息源spouts可以重新发射一个tuple,但是不可靠的消息源spouts一旦发出一个tuple就不能重发了;
消息源可以发射多条消息流stream:
    使用OutputFieldsDeclarer.declareStream来定义多个stream,
    然后使用SpoutOutputCollector来发射指定的stream。

——————————————————————————————————————

Storm中的Bolts
所有的消息处理逻辑被封装在bolts里面;
Bolts可以做很多事情:过滤,聚合,查询数据库等等。
Bolts可以简单的做消息流的传递,也可以通过多级Bolts的组合来完成复杂的消息流处理;比如求TopN、聚合操作等(如果要把这个过程做得更具有扩展性那么可能需要更多的步骤)。

Bolts可以发射多条消息流: 
    使用OutputFieldsDeclarer.declareStream定义stream;
    使用OutputCollector.emit来选择要发射的stream;

Bolts的主要方法是execute:
    它以一个tuple作为输入,使用OutputCollector来发射tuple;
    通过调用OutputCollector的ack方法,以通知这个tuple的发射者spout;

Bolts一般的流程: 
    处理一个输入tuple,  发射0个或者多个tuple, 然后调用ack通知storm自己已经处理过这个tuple了;
    storm提供了一个IBasicBolt会自动调用ack。
——————————————————————————————————————

Storm中的Stream groupings
定义一个topology的关键一步是定义每个bolt接收什么样的流作为输入;
stream grouping就是用来定义一个stream应该如何分配数据给bolts;

Storm里面有7种类型的stream grouping:

Shuffle Grouping——随机分组,随机派发stream里面的tuple,保证每个bolt接收到的tuple数目大致相同;

Fields Grouping——按字段分组,比如按userid来分组,具有同样userid的tuple会被分到相同的Bolts里的一个task,而不同的userid则会被分配到不同的bolts里的task;


All Grouping——广播发送,对于每一个tuple,所有的bolts都会收到;

Global Grouping——全局分组,这个tuple被分配到storm中的一个bolt的其中一个task。再具体一点就是分配给id值最低的那个task;

Non Grouping——不分组,这个分组的意思是说stream不关心到底谁会收到它的tuple。目前这种分组和Shuffle grouping是一样的效果, 有一点不同的是storm会把这个bolt放到这个bolt的订阅者同一个线程里面去执行;

Direct Grouping——直接分组, 这是一种比较特别的分组方法,用这种分组意味着消息的发送者指定由消息接收者的哪个task处理这个消息。 只有被声明为Direct Stream的消息流可以声明这种分组方法。而且这种消息tuple必须使用emitDirect方法来发射。
消息处理者可以通过TopologyContext来获取处理它的消息的task的id (OutputCollector.emit方法也会返回task的id);

Local or shuffle grouping——如果目标bolt有一个或者多个task在同一个工作进程中,tuple将会被随机发生给这些tasks。否则,和普通的Shuffle Grouping行为一致。
——————————————————————————————————————

Storm中的Workers
一个topology可能会在一个或者多个worker(工作进程)里面执行;
每个worker是一个物理JVM并且执行整个topology的一部分;
比如,对于并行度是300的topology来说,如果我们使用50个工作进程来执行,那么每个工作进程会处理其中的6个tasks;
Storm会尽量均匀的工作分配给所有的worker;
——————————————————————————————————————

Storm中的Tasks
每一个spout和bolt会被当作很多task在整个集群里执行
每一个executor对应到一个线程,在这个线程上运行多个task
stream grouping则是定义怎么从一堆task发射tuple到另外一堆task
可以调用TopologyBuilder类的setSpout和setBolt来设置并行度(也就是有多少个task)

——————————————————————————————————————

Storm 体系架构



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/387284.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

梯度下降原理及Python实现

梯度下降算法是一个很基本的算法,在机器学习和优化中有着非常重要的作用,本文首先介绍了梯度下降的基本概念,然后使用python实现了一个基本的梯度下降算法。梯度下降有很多的变种,本文只介绍最基础的梯度下降,也就是批…

matplotlib一些常用知识点的整理,

本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找。 强烈推荐ipython 无论你工作在什么项目上,IPython都是值得推荐的。利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如…

Storm教程3编程接口

Spouts Spout是Stream的消息产生源,Spout组件的实现可以通过继承BaseRichSpout类或者其他Spout类来完成,也可以通过实现IRichSpout接口来实现。 需要根据情况实现Spout类中重要的几个方法有: open方法 当一个Task被初始化的时候会调用此…

梳理操作系统概论

1、用一张图总结操作系统的结构、功能特征、采用的技术和提供服务方式等。 2、用一张图描述CPU的工作原理。 3、用一张图描述系统程序与应用程序、特权指令与非特权指令、CPU状态、PSW及中断是如何协同工作的? 转载于:https://www.cnblogs.com/ljgljg/p/10503190.ht…

位置指纹法的实现(KNN)

基本原理 位置指纹法可以看作是分类或回归问题(特征是RSS向量,标签是位置),监督式机器学习方法可以从数据中训练出一个从特征到标签的映射关系模型。kNN是一种很简单的监督式机器学习算法,可以用来做分类或回归。 对于…

室内定位系列 ——WiFi位置指纹(译)

摘要 GPS难以解决室内环境下的一些定位问题,大部分室内环境下都存在WiFi,因此利用WiFi进行定位无需额外部署硬件设备,是一个非常节省成本的方法。然而WiFi并不是专门为定位而设计的,传统的基于时间和角度的定位方法并不适用于WiFi…

机器学习02线性回归、多项式回归、正规方程

单变量线性回归(Linear Regression with One Variable) 预测器表达式: 选择合适的参数(parameters)θ0 和 θ1,其决定了直线相对于训练集的准确程度。 建模误差(modeling error)&a…

机器学习03Logistic回归

逻辑回归 (Logistic Regression) 目前最流行,使用最广泛的一种学习算法。 分类问题,要预测的变量 y 是离散的值。 逻辑回归算法的性质是:它的输出值永远在 0 到 1 之间。 逻辑回归模型的假设是: 其中&a…

CNN理解比较好的文章

什么是卷积神经网络?为什么它们很重要? 卷积神经网络(ConvNets 或者 CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能力。卷积神经网络可以成功识别人脸、物体和交通信号,从而为机…

Windows 安装Angular CLI

1、安装nvm npm cnpm nrm(onenote笔记上有记录) 参考:https://blog.csdn.net/tyro_java/article/details/51232458 提示:如果发现配置完后,出现类似“npm不是内部命令……”等信息。 可采取如下措施进行解决—— 检查环…

机器学习04正则化

正则化(Regularization) 过拟合问题(Overfitting): 如果有非常多的特征,通过学习得到的假设可能能够非常好地适应训练集 :代价函数可能几乎为 0), 但是可能会不能推广到…

Adaboost算法

概述 一句话概述Adaboost算法的话就是:把多个简单的分类器结合起来形成个复杂的分类器。也就是“三个臭皮匠顶一个诸葛亮”的道理。 可能仅看上面这句话还没什么概念,那下面我引用个例子。 如下图所示: 在D1这个数据集中有两类数据“”和“-”…

机器学习05神经网络--表示

神经网络:表示(Neural Networks: Representation) 如今的神经网络对于许多应用来说是最先进的技术。 对于现代机器学习应用,它是最有效的技术方法。 神经网络模型是许多逻辑单元按照不同层级组织起来的网络, 每一层…

逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种。通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的

逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种。通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的特征属性,例如性别,年龄&#x…

机器学习06神经网络--学习

代价函数 标记方法: 神经网络的训练样本有 m 个 每个包含一组输入 x 和一组输出信号 y L 表示神经网络层数 Sl表示每层的 neuron 个数(SL 表示输出层神经元个数) 将神经网络的分类定义为两种情况: 二类分类:SL1, y0 or 1 表示哪一类&…

Logistic Regression Classifier逻辑回归

Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。 优点:计算代价不高,易于理解和实现。缺点:容易欠拟合,分类精度可能不高…

机器学习07应用机器学习的建议

决定下一步做什么(Deciding What to Try Next) 确保在设计机器学习系统时,能够选择一条最合适、最正确的道路。 具体来讲,将重点关注的问题是:假如你在开发一个机器学习系统,或者想试着改进一个机器学习…

CSS3--5.颜色属性

HTML5中添加了一些新的颜色的表示方式 1.RGBA:说得简单一点就是在RGB的基础上加进了一个通道Alpha。RGBA在RGB的基础上多了控制alpha透明度的参数。以上R、G、B三个参数,正整数值的取值范围为:0 - 255。百分数值的取值范围为:0.0%…

逻辑回归的通俗解释 逻辑回归的定位

1 逻辑回归的定位 首先,逻辑回归是一种分类(Classification)算法。比如说: 给定一封邮件,判断是不是垃圾邮件给出一个交易明细数据,判断这个交易是否是欺诈交易给出一个肿瘤检查的结果数据,判断…

机器学习08机器学习系统设计

首先要做什么 一个垃圾邮件分类器算法为例: 为了解决这样一个问题,首先要做的决定是如何选择并表达特征向量 x。 可以选择一个由 100 个最常出现在垃圾邮件中的词所构成的列表,根据这些词是否有在邮件中 出现,来获得我们的特…