位置指纹法的实现(KNN)


基本原理

位置指纹法可以看作是分类或回归问题(特征是RSS向量,标签是位置),监督式机器学习方法可以从数据中训练出一个从特征到标签的映射关系模型。kNN是一种很简单的监督式机器学习算法,可以用来做分类或回归。

对于在线RSS向量ss,分别计算它与指纹库中各个RSS向量{s1,s2,...,sMs1,s2,...,sM}的距离(比如欧氏距离),选取最近的kk个位置指纹(一个指纹是一个RSS向量与一个位置的对应)。

  • 对于knn回归,标签是坐标x和坐标y,可以进行数值计算,使用这k个指纹的位置坐标取平均,得到作为定位结果。

  • 对于knn分类,将定位区域划分为1m××1m的网格,每个网格是看作一个类别,用网格标号代替,对k个网格标号计数投票,选择票数做多的网格作为定位结果。

kNN是一种lazy式的学习方法,在上面的过程中不需要使用训练数据进行“学习”,在定位的时候直接在训练数据中搜索就可以。一些工具包中的kNN算法的训练过程中会建立一个kd树(一种数据结构),有利于在线预测时的搜索。


具体实现

Github地址,包括matlab版本和python版本
数据来源说明:http://www.cnblogs.com/rubbninja/p/6118430.html

导入数据

# 导入数据
import numpy as np
import scipy.io as scio
offline_data = scio.loadmat('offline_data_random.mat')
online_data = scio.loadmat('online_data.mat')
offline_location, offline_rss = offline_data['offline_location'], offline_data['offline_rss']
trace, rss = online_data['trace'][0:1000, :], online_data['rss'][0:1000, :]
del offline_data
del online_data
# 定位准确度
def accuracy(predictions, labels):return np.mean(np.sqrt(np.sum((predictions - labels)**2, 1)))

knn回归

# knn回归
from sklearn import neighbors
knn_reg = neighbors.KNeighborsRegressor(40, weights='uniform', metric='euclidean')
predictions = knn_reg.fit(offline_rss, offline_location).predict(rss)
acc = accuracy(predictions, trace)
print "accuracy: ", acc/100, "m"
accuracy:  2.24421479398 m

knn分类

# knn分类,需要把坐标转换成网格标号,预测后将网格标号转换为坐标
labels = np.round(offline_location[:, 0]/100.0) * 100 + np.round(offline_location[:, 1]/100.0)
from sklearn import neighbors
knn_cls = neighbors.KNeighborsClassifier(n_neighbors=40, weights='uniform', metric='euclidean')
predict_labels = knn_cls.fit(offline_rss, labels).predict(rss)
x = np.floor(predict_labels/100.0)
y = predict_labels - x * 100
predictions = np.column_stack((x, y)) * 100
acc = accuracy(predictions, trace)
print "accuracy: ", acc/100, 'm'
accuracy:  2.73213398632 m

定位算法分析

加入数据预处理和交叉验证

# 预处理,标准化数据(其实RSS数据还算正常,不预处理应该也无所谓,特征选择什么的也都不需要)
from sklearn.preprocessing import StandardScaler
standard_scaler = StandardScaler().fit(offline_rss)
X_train = standard_scaler.transform(offline_rss)
Y_train = offline_location
X_test = standard_scaler.transform(rss)
Y_test = trace
# 交叉验证,在knn里用来选择最优的超参数k
from sklearn.model_selection import GridSearchCV
from sklearn import neighbors
parameters = {'n_neighbors':range(1, 50)}
knn_reg = neighbors.KNeighborsRegressor(weights='uniform', metric='euclidean')
clf = GridSearchCV(knn_reg, parameters)
clf.fit(offline_rss, offline_location)
scores = clf.cv_results_['mean_test_score']
k = np.argmax(scores) #选择score最大的k
# 绘制超参数k与score的关系曲线
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(range(1, scores.shape[0] + 1), scores, '-o', linewidth=2.0)
plt.xlabel("k")
plt.ylabel("score")
plt.grid(True)
plt.show()

png

# 使用最优的k做knn回归
knn_reg = neighbors.KNeighborsRegressor(n_neighbors=k, weights='uniform', metric='euclidean')
predictions = knn_reg.fit(offline_rss, offline_location).predict(rss)
acc = accuracy(predictions, trace)
print "accuracy: ", acc/100, "m"
accuracy:  2.22455511073 m
# 训练数据量与accuracy
k = 29
data_num = range(100, 30000, 300)
acc = []
for i in data_num:knn_reg = neighbors.KNeighborsRegressor(n_neighbors=k, weights='uniform', metric='euclidean')predictions = knn_reg.fit(offline_rss[:i, :], offline_location[:i, :]).predict(rss)acc.append(accuracy(predictions, trace) / 100)
# 绘制训练数据量与accuracy的曲线
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(data_num, acc, '-o', linewidth=2.0)
plt.xlabel("data number")
plt.ylabel("accuracy (m)")
plt.grid(True)
plt.show()

png



作者:rubbninja
出处:http://www.cnblogs.com/rubbninja/
关于作者:目前主要研究领域为机器学习与无线定位技术,欢迎讨论与指正!
版权声明:本文版权归作者和博客园共有,转载请注明出处。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/387275.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

室内定位系列 ——WiFi位置指纹(译)

摘要 GPS难以解决室内环境下的一些定位问题,大部分室内环境下都存在WiFi,因此利用WiFi进行定位无需额外部署硬件设备,是一个非常节省成本的方法。然而WiFi并不是专门为定位而设计的,传统的基于时间和角度的定位方法并不适用于WiFi…

机器学习02线性回归、多项式回归、正规方程

单变量线性回归(Linear Regression with One Variable) 预测器表达式: 选择合适的参数(parameters)θ0 和 θ1,其决定了直线相对于训练集的准确程度。 建模误差(modeling error)&a…

机器学习03Logistic回归

逻辑回归 (Logistic Regression) 目前最流行,使用最广泛的一种学习算法。 分类问题,要预测的变量 y 是离散的值。 逻辑回归算法的性质是:它的输出值永远在 0 到 1 之间。 逻辑回归模型的假设是: 其中&a…

CNN理解比较好的文章

什么是卷积神经网络?为什么它们很重要? 卷积神经网络(ConvNets 或者 CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能力。卷积神经网络可以成功识别人脸、物体和交通信号,从而为机…

Windows 安装Angular CLI

1、安装nvm npm cnpm nrm(onenote笔记上有记录) 参考:https://blog.csdn.net/tyro_java/article/details/51232458 提示:如果发现配置完后,出现类似“npm不是内部命令……”等信息。 可采取如下措施进行解决—— 检查环…

机器学习04正则化

正则化(Regularization) 过拟合问题(Overfitting): 如果有非常多的特征,通过学习得到的假设可能能够非常好地适应训练集 :代价函数可能几乎为 0), 但是可能会不能推广到…

Adaboost算法

概述 一句话概述Adaboost算法的话就是:把多个简单的分类器结合起来形成个复杂的分类器。也就是“三个臭皮匠顶一个诸葛亮”的道理。 可能仅看上面这句话还没什么概念,那下面我引用个例子。 如下图所示: 在D1这个数据集中有两类数据“”和“-”…

机器学习05神经网络--表示

神经网络:表示(Neural Networks: Representation) 如今的神经网络对于许多应用来说是最先进的技术。 对于现代机器学习应用,它是最有效的技术方法。 神经网络模型是许多逻辑单元按照不同层级组织起来的网络, 每一层…

逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种。通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的

逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种。通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的特征属性,例如性别,年龄&#x…

机器学习06神经网络--学习

代价函数 标记方法: 神经网络的训练样本有 m 个 每个包含一组输入 x 和一组输出信号 y L 表示神经网络层数 Sl表示每层的 neuron 个数(SL 表示输出层神经元个数) 将神经网络的分类定义为两种情况: 二类分类:SL1, y0 or 1 表示哪一类&…

Logistic Regression Classifier逻辑回归

Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。 优点:计算代价不高,易于理解和实现。缺点:容易欠拟合,分类精度可能不高…

机器学习07应用机器学习的建议

决定下一步做什么(Deciding What to Try Next) 确保在设计机器学习系统时,能够选择一条最合适、最正确的道路。 具体来讲,将重点关注的问题是:假如你在开发一个机器学习系统,或者想试着改进一个机器学习…

CSS3--5.颜色属性

HTML5中添加了一些新的颜色的表示方式 1.RGBA:说得简单一点就是在RGB的基础上加进了一个通道Alpha。RGBA在RGB的基础上多了控制alpha透明度的参数。以上R、G、B三个参数,正整数值的取值范围为:0 - 255。百分数值的取值范围为:0.0%…

逻辑回归的通俗解释 逻辑回归的定位

1 逻辑回归的定位 首先,逻辑回归是一种分类(Classification)算法。比如说: 给定一封邮件,判断是不是垃圾邮件给出一个交易明细数据,判断这个交易是否是欺诈交易给出一个肿瘤检查的结果数据,判断…

机器学习08机器学习系统设计

首先要做什么 一个垃圾邮件分类器算法为例: 为了解决这样一个问题,首先要做的决定是如何选择并表达特征向量 x。 可以选择一个由 100 个最常出现在垃圾邮件中的词所构成的列表,根据这些词是否有在邮件中 出现,来获得我们的特…

数学笔记1——导数1(导数的基本概念)

什么是导数导数是高数中的重要概念,被应用于多种学科。从物理意义上讲,导数就是求解变化率的问题;从几何意义上讲,导数就是求函数在某一点上的切线的斜率。我们熟知的速度公式:v s/t,这求解的是平均速度&a…

python接口自动化(四)--接口测试工具介绍(详解)

简介 “工欲善其事必先利其器”,通过前边几篇文章的介绍,大家大致对接口有了进一步的认识。那么接下来让我们看看接口测试的工具有哪些。 目前,市场上有很多支持接口测试的工具。利用工具进行接口测试,能够提供测试效率。例如&…

机器学习09支持向量机

支持向量机(Support Vector Machines) 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法 A 还是学习算法 B,而更重要的是, 应用这些算法时,所创建的大量数据在应用这些算…

数学笔记2

数学笔记2——导数2(求导法则和高阶导数)和、差、积、商求导法则设uu(x),vv(x)都可导,则:(Cu)’ Cu’, C是常数(u v)’ u’ v’(uv)’ u’ v’(u/v)’ (u’v – uv’) / v21、2不解释,下面给出3、4的推导过程乘法法则的推导过乘法法则…

机器学习10聚类

无监督学习 在非监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中, 然后让它找这个数据的内在结构。 我们可能需要某种算法帮助我们寻找一种结构。图上的数据看起来可以分成两个分开的点集(称为簇)&am…