线程池的优点
1、线程是稀缺资源,使用线程池可以减少创建和销毁线程的次数,每个工作线程都可以重复使用。
2、可以根据系统的承受能力,调整线程池中工作线程的数量,防止因为消耗过多内存导致服务器崩溃。
线程池的创建
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler)
corePoolSize:线程池核心线程数量
maximumPoolSize:线程池最大线程数量
keepAliverTime:当活跃线程数大于核心线程数时,空闲的多余线程最大存活时间
unit:存活时间的单位
workQueue:存放任务的队列
handler:超出线程范围和队列容量的任务的处理程序
线程池的实现原理
提交一个任务到线程池中,线程池的处理流程如下:
1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。如果核心线程都在执行任务,则进入下个流程。
2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。
3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。
线程池的源码解读
1、ThreadPoolExecutor的execute()方法
1 public void execute(Runnable command) {2 if (command == null)3 throw new NullPointerException();//如果线程数大于等于基本线程数或者线程创建失败,将任务加入队列4 if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {//线程池处于运行状态并且加入队列成功5 if (runState == RUNNING && workQueue.offer(command)) {6 if (runState != RUNNING || poolSize == 0)7 ensureQueuedTaskHandled(command);8 }//线程池不处于运行状态或者加入队列失败,则创建线程(创建的是非核心线程)9 else if (!addIfUnderMaximumPoolSize(command))//创建线程失败,则采取阻塞处理的方式
10 reject(command); // is shutdown or saturated
11 }
12 }
2、创建线程的方法:addIfUnderCorePoolSize(command)
1 private boolean addIfUnderCorePoolSize(Runnable firstTask) {2 Thread t = null;3 final ReentrantLock mainLock = this.mainLock;4 mainLock.lock();5 try {6 if (poolSize < corePoolSize && runState == RUNNING)7 t = addThread(firstTask);8 } finally {9 mainLock.unlock();
10 }
11 if (t == null)
12 return false;
13 t.start();
14 return true;
15 }
我们重点来看第7行:
1 private Thread addThread(Runnable firstTask) {2 Worker w = new Worker(firstTask);3 Thread t = threadFactory.newThread(w);4 if (t != null) {5 w.thread = t;6 workers.add(w);7 int nt = ++poolSize;8 if (nt > largestPoolSize)9 largestPoolSize = nt;
10 }
11 return t;
12 }
这里将线程封装成工作线程worker,并放入工作线程组里,worker类的方法run方法:
public void run() {try {Runnable task = firstTask;firstTask = null;while (task != null || (task = getTask()) != null) {runTask(task);task = null;}} finally {workerDone(this);}}
worker在执行完任务后,还会通过getTask方法循环获取工作队里里的任务来执行。
我们通过一个程序来观察线程池的工作原理:
1、创建一个线程
1 public class ThreadPoolTest implements Runnable2 {3 @Override4 public void run()5 {6 try7 {8 Thread.sleep(300);9 }
10 catch (InterruptedException e)
11 {
12 e.printStackTrace();
13 }
14 }
15 }
2、线程池循环运行16个线程:
1 public static void main(String[] args)2 {3 LinkedBlockingQueue<Runnable> queue =4 new LinkedBlockingQueue<Runnable>(5);5 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(5, 10, 60, TimeUnit.SECONDS, queue);6 for (int i = 0; i < 16 ; i++)7 {8 threadPool.execute(9 new Thread(new ThreadPoolTest(), "Thread".concat(i + "")));
10 System.out.println("线程池中活跃的线程数: " + threadPool.getPoolSize());
11 if (queue.size() > 0)
12 {
13 System.out.println("----------------队列中阻塞的线程数" + queue.size());
14 }
15 }
16 threadPool.shutdown();
17 }
执行结果:
线程池中活跃的线程数: 1
线程池中活跃的线程数: 2
线程池中活跃的线程数: 3
线程池中活跃的线程数: 4
线程池中活跃的线程数: 5
线程池中活跃的线程数: 5
----------------队列中阻塞的线程数1
线程池中活跃的线程数: 5
----------------队列中阻塞的线程数2
线程池中活跃的线程数: 5
----------------队列中阻塞的线程数3
线程池中活跃的线程数: 5
----------------队列中阻塞的线程数4
线程池中活跃的线程数: 5
----------------队列中阻塞的线程数5
线程池中活跃的线程数: 6
----------------队列中阻塞的线程数5
线程池中活跃的线程数: 7
----------------队列中阻塞的线程数5
线程池中活跃的线程数: 8
----------------队列中阻塞的线程数5
线程池中活跃的线程数: 9
----------------队列中阻塞的线程数5
线程池中活跃的线程数: 10
----------------队列中阻塞的线程数5
Exception in thread "main" java.util.concurrent.RejectedExecutionException: Task Thread[Thread15,5,main] rejected from java.util.concurrent.ThreadPoolExecutor@232204a1[Running, pool size = 10, active threads = 10, queued tasks = 5, completed tasks = 0]at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2047)at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:823)at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1369)at test.ThreadTest.main(ThreadTest.java:17)
从结果可以观察出:
1、创建的线程池具体配置为:核心线程数量为5个;全部线程数量为10个;工作队列的长度为5。
2、我们通过queue.size()的方法来获取工作队列中的任务数。
3、运行原理:
刚开始都是在创建新的线程,达到核心线程数量5个后,新的任务进来后不再创建新的线程,而是将任务加入工作队列,任务队列到达上线5个后,新的任务又会创建新的普通线程,直到达到线程池最大的线程数量10个,后面的任务则根据配置的饱和策略来处理。我们这里没有具体配置,使用的是默认的配置AbortPolicy:直接抛出异常。
当然,为了达到我需要的效果,上述线程处理的任务都是利用休眠导致线程没有释放!!!
RejectedExecutionHandler:饱和策略
当队列和线程池都满了,说明线程池处于饱和状态,那么必须对新提交的任务采用一种特殊的策略来进行处理。这个策略默认配置是AbortPolicy,表示无法处理新的任务而抛出异常。JAVA提供了4中策略:
1、AbortPolicy:直接抛出异常
2、CallerRunsPolicy:只用调用所在的线程运行任务
3、DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
4、DiscardPolicy:不处理,丢弃掉。
我们现在用第四种策略来处理上面的程序:
1 public static void main(String[] args)2 {3 LinkedBlockingQueue<Runnable> queue =4 new LinkedBlockingQueue<Runnable>(3);5 RejectedExecutionHandler handler = new ThreadPoolExecutor.DiscardPolicy();6 7 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 5, 60, TimeUnit.SECONDS, queue,handler);8 for (int i = 0; i < 9 ; i++)9 {
10 threadPool.execute(
11 new Thread(new ThreadPoolTest(), "Thread".concat(i + "")));
12 System.out.println("线程池中活跃的线程数: " + threadPool.getPoolSize());
13 if (queue.size() > 0)
14 {
15 System.out.println("----------------队列中阻塞的线程数" + queue.size());
16 }
17 }
18 threadPool.shutdown();
19 }
执行结果:
线程池中活跃的线程数: 1
线程池中活跃的线程数: 2
线程池中活跃的线程数: 2
----------------队列中阻塞的线程数1
线程池中活跃的线程数: 2
----------------队列中阻塞的线程数2
线程池中活跃的线程数: 2
----------------队列中阻塞的线程数3
线程池中活跃的线程数: 3
----------------队列中阻塞的线程数3
线程池中活跃的线程数: 4
----------------队列中阻塞的线程数3
线程池中活跃的线程数: 5
----------------队列中阻塞的线程数3
线程池中活跃的线程数: 5
----------------队列中阻塞的线程数3
这里采用了丢弃策略后,就没有再抛出异常,而是直接丢弃。在某些重要的场景下,可以采用记录日志或者存储到数据库中,而不应该直接丢弃。
设置策略有两种方式:
1、
RejectedExecutionHandler handler = new ThreadPoolExecutor.DiscardPolicy();ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 5, 60, TimeUnit.SECONDS, queue,handler);
2、
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 5, 60, TimeUnit.SECONDS, queue);threadPool.setRejectedExecutionHandler(new ThreadPoolExecutor.AbortPolicy());
Executor框架的两级调度模型
在HotSpot VM的模型中,JAVA线程被一对一映射为本地操作系统线程。JAVA线程启动时会创建一个本地操作系统线程,当JAVA线程终止时,对应的操作系统线程也被销毁回收,而操作系统会调度所有线程并将它们分配给可用的CPU。
在上层,JAVA程序会将应用分解为多个任务,然后使用应用级的调度器(Executor)将这些任务映射成固定数量的线程;在底层,操作系统内核将这些线程映射到硬件处理器上。
Executor框架类图
在前面介绍的JAVA线程既是工作单元,也是执行机制。而在Executor框架中,我们将工作单元与执行机制分离开来。Runnable和Callable是工作单元(也就是俗称的任务),而执行机制由Executor来提供。这样一来Executor是基于生产者消费者模式的,提交任务的操作相当于生成者,执行任务的线程相当于消费者。
1、从类图上看,Executor接口是异步任务执行框架的基础,该框架能够支持多种不同类型的任务执行策略。
public interface Executor {void execute(Runnable command);
}
Executor接口就提供了一个执行方法,任务是Runnbale类型,不支持Callable类型。
2、ExecutorService接口实现了Executor接口,主要提供了关闭线程池和submit方法:
public interface ExecutorService extends Executor {List<Runnable> shutdownNow();boolean isTerminated();<T> Future<T> submit(Callable<T> task);}
另外该接口有两个重要的实现类:ThreadPoolExecutor与ScheduledThreadPoolExecutor。
其中ThreadPoolExecutor是线程池的核心实现类,用来执行被提交的任务;而ScheduledThreadPoolExecutor是一个实现类,可以在给定的延迟后运行任务,或者定期执行命令。
在上一篇文章中,我是使用ThreadPoolExecutor来通过给定不同的参数从而创建自己所需的线程池,但是在后面的工作中不建议这种方式,推荐使用Exectuors工厂方法来创建线程池
这里先来区别线程池和线程组(ThreadGroup与ThreadPoolExecutor)这两个概念:
a、线程组就表示一个线程的集合。
b、线程池是为线程的生命周期开销问题和资源不足问题提供解决方案,主要是用来管理线程。
Executors可以创建3种类型的ThreadPoolExecutor:SingleThreadExecutor、FixedThreadExecutor和CachedThreadPool
a、SingleThreadExecutor:单线程线程池
ExecutorService threadPool = Executors.newSingleThreadExecutor();
public static ExecutorService newSingleThreadExecutor() {return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));}
我们从源码来看可以知道,单线程线程池的创建也是通过ThreadPoolExecutor,里面的核心线程数和线程数都是1,并且工作队列使用的是无界队列。由于是单线程工作,每次只能处理一个任务,所以后面所有的任务都被阻塞在工作队列中,只能一个个任务执行。
b、FixedThreadExecutor:固定大小线程池
ExecutorService threadPool = Executors.newFixedThreadPool(5);
public static ExecutorService newFixedThreadPool(int nThreads) {return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());}
这个与单线程类似,只是创建了固定大小的线程数量。
c、CachedThreadPool:无界线程池
ExecutorService threadPool = Executors.newCachedThreadPool();
public static ExecutorService newCachedThreadPool() {return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());}
无界线程池意味着没有工作队列,任务进来就执行,线程数量不够就创建,与前面两个的区别是:空闲的线程会被回收掉,空闲的时间是60s。这个适用于执行很多短期异步的小程序或者负载较轻的服务器。
Callable、Future、FutureTash详解
Callable与Future是在JAVA的后续版本中引入进来的,Callable类似于Runnable接口,实现Callable接口的类与实现Runnable的类都是可以被线程执行的任务。
三者之间的关系:
Callable是Runnable封装的异步运算任务。
Future用来保存Callable异步运算的结果
FutureTask封装Future的实体类
1、Callable与Runnbale的区别
a、Callable定义的方法是call,而Runnable定义的方法是run。
b、call方法有返回值,而run方法是没有返回值的。
c、call方法可以抛出异常,而run方法不能抛出异常。
2、Future
Future表示异步计算的结果,提供了以下方法,主要是判断任务是否完成、中断任务、获取任务执行结果
1 public interface Future<V> {2 3 boolean cancel(boolean mayInterruptIfRunning);4 5 boolean isCancelled();6 7 boolean isDone();8 9 V get() throws InterruptedException, ExecutionException;
10
11 V get(long timeout, TimeUnit unit)
12 throws InterruptedException, ExecutionException, TimeoutException;
13 }
3、FutureTask<V>
可取消的异步计算,此类提供了对Future的基本实现,仅在计算完成时才能获取结果,如果计算尚未完成,则阻塞get方法。
public class FutureTask<V> implements RunnableFuture<V>
public interface RunnableFuture<V> extends Runnable, Future<V>
FutureTask不仅实现了Future接口,还实现了Runnable接口,所以不仅可以将FutureTask当成一个任务交给Executor来执行,还可以通过Thread来创建一个线程。
Callable与FutureTask
定义一个callable的任务:
1 public class MyCallableTask implements Callable<Integer>2 {3 @Override4 public Integer call()5 throws Exception6 {7 System.out.println("callable do somothing");8 Thread.sleep(5000);9 return new Random().nextInt(100);
10 }
11 }
1 public class CallableTest2 {3 public static void main(String[] args) throws Exception4 {5 Callable<Integer> callable = new MyCallableTask();6 FutureTask<Integer> future = new FutureTask<Integer>(callable);7 Thread thread = new Thread(future);8 thread.start();9 Thread.sleep(100);
10 //尝试取消对此任务的执行
11 future.cancel(true);
12 //判断是否在任务正常完成前取消
13 System.out.println("future is cancel:" + future.isCancelled());
14 if(!future.isCancelled())
15 {
16 System.out.println("future is cancelled");
17 }
18 //判断任务是否已完成
19 System.out.println("future is done:" + future.isDone());
20 if(!future.isDone())
21 {
22 System.out.println("future get=" + future.get());
23 }
24 else
25 {
26 //任务已完成
27 System.out.println("task is done");
28 }
29 }
30 }
执行结果:
callable do somothing
future is cancel:true
future is done:true
task is done
这个DEMO主要是通过调用FutureTask的状态设置的方法,演示了状态的变迁。
a、第11行,尝试取消对任务的执行,该方法如果由于任务已完成、已取消则返回false,如果能够取消还未完成的任务,则返回true,该DEMO中由于任务还在休眠状态,所以可以取消成功。
future.cancel(true);
b、第13行,判断任务取消是否成功:如果在任务正常完成前将其取消,则返回true
System.out.println("future is cancel:" + future.isCancelled());
c、第19行,判断任务是否完成:如果任务完成,则返回true,以下几种情况都属于任务完成:正常终止、异常或者取消而完成。
我们的DEMO中,任务是由于取消而导致完成。
System.out.println("future is done:" + future.isDone());
d、在第22行,获取异步线程执行的结果,我这个DEMO中没有执行到这里,需要注意的是,future.get方法会阻塞当前线程, 直到任务执行完成返回结果为止。
System.out.println("future get=" + future.get());
Callable与Future
public class CallableThread implements Callable<String>
{@Overridepublic String call()throws Exception{System.out.println("进入Call方法,开始休眠,休眠时间为:" + System.currentTimeMillis());Thread.sleep(10000);return "今天停电";}public static void main(String[] args) throws Exception{ExecutorService es = Executors.newSingleThreadExecutor();Callable<String> call = new CallableThread();Future<String> fu = es.submit(call);es.shutdown();Thread.sleep(5000);System.out.println("主线程休眠5秒,当前时间" + System.currentTimeMillis());String str = fu.get();System.out.println("Future已拿到数据,str=" + str + ";当前时间为:" + System.currentTimeMillis());}
}
执行结果:
进入Call方法,开始休眠,休眠时间为:1478606602676
主线程休眠5秒,当前时间1478606608676
Future已拿到数据,str=今天停电;当前时间为:1478606612677
这里的future是直接扔到线程池里面去执行的。由于要打印任务的执行结果,所以从执行结果来看,主线程虽然休眠了5s,但是从Call方法执行到拿到任务的结果,这中间的时间差正好是10s,说明get方法会阻塞当前线程直到任务完成。
通过FutureTask也可以达到同样的效果:
public static void main(String[] args) throws Exception{ExecutorService es = Executors.newSingleThreadExecutor();Callable<String> call = new CallableThread();FutureTask<String> task = new FutureTask<String>(call);es.submit(task);es.shutdown();Thread.sleep(5000);System.out.println("主线程等待5秒,当前时间为:" + System.currentTimeMillis());String str = task.get();System.out.println("Future已拿到数据,str=" + str + ";当前时间为:" + System.currentTimeMillis());}
以上的组合可以给我们带来这样的一些变化:
如有一种场景中,方法A返回一个数据需要10s,A方法后面的代码运行需要20s,但是这20s的执行过程中,只有后面10s依赖于方法A执行的结果。如果与以往一样采用同步的方式,势必会有10s的时间被浪费,如果采用前面两种组合,则效率会提高:
1、先把A方法的内容放到Callable实现类的call()方法中
2、在主线程中通过线程池执行A任务
3、执行后面方法中10秒不依赖方法A运行结果的代码
4、获取方法A的运行结果,执行后面方法中10秒依赖方法A运行结果的代码
这样代码执行效率一下子就提高了,程序不必卡在A方法处。