勘探开发人工智能技术:机器学习(6)

0 提纲

7.1 循环神经网络RNN
7.2 LSTM
7.3 Transformer
7.4 U-Net

1 循环神经网络RNN

把上一时刻的输出作为下一时刻的输入之一.

1.1 全连接神经网络的缺点

现在的任务是要利用如下语料来给apple打标签:

  • 第一句话:I like eating apple!(我喜欢吃苹果!)
  • 第二句话:The Apple is a great company!(苹果真是一家很棒的公司!)

第一个apple是一种水果,第二个apple是苹果公司。
全连接神经网络没有利用上下文来训练模型,模型在训练的过程中,预测的准确程度,取决于训练集中哪个标签多一些,如果水果多,就打上水果的标签,如果苹果公司多,就打上苹果公司;显然这样的模型不能对未知样本进行准确的预测。
循环神经网络 (Recurrent Neural Network, RNN) 用于处理序列数据.

1.2 动机

序列数据中, 前后数据之间不是独立的, 而是会产生上下文影响. 如:

  • 文本, 机器翻译一个句子的时候, 不是逐个单词的翻译 (你可以发现近 10 年机器翻译的质量大幅提升, 最近的 chatGPT 更是火得一蹋糊涂);
  • 音频, 可以在微信中让机器把你讲的话转成文字;
  • 投票, 虽然股价预测不靠谱, 但根据时序进行预测却是人们最喜欢干的事情。

1.3 RNN的结构

在这里插入图片描述
左图如果不考虑 W W W,就是一个全连接神经网络:

  • 输入层:向量 x x x,假设维度为3;
  • 隐藏层:向量 s s s,假设维度为4;
  • 输出层:向量 o o o,假设维度为2;
  • U U U:输入层到隐藏层的参数矩阵,维度为 3 × 4 3×4 3×4
  • V V V:隐藏层到输出层的参数矩阵,维度为 4 × 2 4×2 4×2

左图如果考虑 W W W,可以展开为右图:

  • x t − 1 x_{t−1} xt1:表示 t − 1 t−1 t1时刻的输入;
  • x t x_t xt:表示 t t t时刻的输入;
  • x t + 1 x_{t+1} xt+1:表示 t + 1 t+1 t+1时刻的输入;
  • W W W:每个时间点的权重矩阵;
  • o t o_t ot:表示 t t t时刻的输出;
  • s t s_t st:表示 t t t时刻的隐藏层;

RNN 把前一时刻 (简便起见, 前一个单词我也称为前一时刻) 的输出, 当作本阶段输入的一部分. 这里 x t − 1 x_{t−1} xt1为前一时刻的输入, 而 s t − 1 s_{t-1} st1 为前一时刻的输出. 这样, 就把数据的前后联系体现出来了.

1.4 RNN的缺点

每一时刻的隐藏状态都不仅由该时刻的输入决定,还取决于上一时刻的隐藏层的值,如果一个句子很长,到句子末尾时,它将记不住这个句子的开头的内容详细内容。

2 长短期记忆网络LSTM

选择性的存储.

2.1 LSTM的原理

LSTM是高级的RNN,与RNN的主要区别在于:

  • RNN每个时刻都会把隐藏层的值存下来,到下一时刻再拿出来使用,RNN没有挑选的能力;
  • LSTM不一样,它有门控装置,会选择性的存储信息。既有记忆 (重要信息) 的功能, 也有遗忘 (不重要信息) 的功能.

在这里插入图片描述
LSTM多了三个门:

  • 输入门:输入的信息经过输入门,输入门的开关决定这一时刻是否会将信息输入到Memory Cell;
  • 输出门:每一时刻是否有信息从Memory Cell输出取决于这一道门;
  • 遗忘门:每一时刻Memory Cell里的值都会经历一个是否被遗忘的过程.

2.2 讨论?

遗忘也是一种功能吗? 当然是了.
所谓好了伤疤忘了痛, 如果一个人不会遗忘, 很快就精神失常了.
在这里插入图片描述
详细分析见:
https://mp.weixin.qq.com/s?__biz=MzU0MDQ1NjAzNg==&mid=2247535325&idx=1&sn=7d805b06916a3da299e20c0445f59a07&chksm=fb3aefd6cc4d66c06b0f2d5779c83861474d2442f9b3387a4b87f45f3218efc92c3335602678&scene=27

3 变形金刚Transformer:注意力机制

定位到感兴趣的信息, 抑制无用信息 (怎么有点像 PCA).

3.1 CNN及RNN的缺点

  • RNN:很难实现并行(左图,计算 b 4 b^4 b4需要串行查询 a 1 , a 2 , a 3 , a 4 a^1,a^2,a^3,a^4 a1,a2,a3,a4);
  • CNN:可以实现并行,需要堆叠多层的CNN才能学习到整个序列的特征(右图).

在这里插入图片描述

3.2 自注意力机制(self-attention)

采用自注意力机制层取代RNN来处理序列,同时实现序列的并行处理。
自注意力机制具体内容见https://blog.csdn.net/search_129_hr/article/details/129522922

在这里插入图片描述

3.3 注意力机制

数据有重要的数据不重要的数据。在模型处理数据的过程中,如果只关注较为重要的数据部分,忽略不重要的部分,那训练的速度、模型的精度就会变得更好。
如果给你一张这个图,你眼睛的重点会聚焦在红色区域:
在这里插入图片描述

  • 人看脸
  • 文章看标题
  • 段落看开头

在训练过程中,输入的权重也都是不同的,注意力机制就是学习到这些权重
最开始attention机制在CV领域被提出来,后面广泛应用在NLP领域。
在这里插入图片描述

3.4 Tranformer的原理

Transformer 主要分为两部分:Encoder编码器 和 Decoder解码器

  • Encoder:负责把输入(语言序列)隐射成隐藏层(图中第 2 步九宫格表示),即把自然语言序列映射为隐藏层的数学表达的过程;
  • Decoder:把隐藏层映射为自然语言序列。

在这里插入图片描述

4 U-Net

先编码获得内部表示, 再解码获得目标数据 (怎么有点像矩阵分解).

4.1 U-Net核心思想

U-Net 集编码-解码于一体, 是一种常见的网络架构.
如图所示, U-Net 就是 U 形状的网络, 前半部分 (左边) 进行编码, 后半部分 (右边) 进行解码.
在这里插入图片描述
编码部分, 将一个图像经过特征提取, 变成一个小矩阵(28 × 28). 前面说过: 深度学习本质上只做一件事情, 就是特征提取.
解码部分, 将压缩表示解压, 又变回大矩阵,完成图像分割任务.
从思想上, 压缩与解压, 这与矩阵分解有几分类似, 都是把数据进行某种形式的压缩表示.

输入的是原始图像,通过网络结构后得到的是分割后的图像。
最特殊的部分是结构的后半部分,该网络结构没有全连接层,只采用了卷积层,每个标准的卷积层后面都紧跟着一个Relu激活函数层

4.2 U-Net的应用

自编码器. 直接将输入数据作为标签, 看编码导致的损失 (更像矩阵分解了).
风格迁移:从一种风格转换为另一种风格. 如将自然照片转换成卡通风格, 将地震数据转换成速度模型 (2010年如果你这么做会被业内人士笑话的).
图像分割, 或提取图片的边缘. 嗯, 这个和转成卡通风格也差不多.
机器翻译. 把句子编码成机器内部的表示 (一种新的世界语言?), 然后转成其它语言的句子.
输入一个头, 输出多个头, 就可以做多任务. 如在速度模型反演的同时, 进行边缘提取, 这样导致反演的结果更丝滑.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/38455.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pytorch3d成功安装

一、pytorch3d是什么? PyTorch3D的目标是帮助加速深度学习和3D交叉点的研究。3D数据比2D图像更复杂,在从事Mesh R-CNN和C3DPO等项目时,我们遇到了一些挑战,包括3D数据表示、批处理和速度。我们开发了许多有用的算子和抽象&#xf…

【Visual Studio Code】--- Win11 安装 VS Code 超详细

Win11 安装 VS Code 超详细 概述一、下载 Vscode二、安装 Vscode 概述 一个好的文章能够帮助开发者完成更便捷、更快速的开发。书山有路勤为径,学海无涯苦作舟。我是秋知叶i、期望每一个阅读了我的文章的开发者都能够有所成长。 一、下载 Vscode Vscode官网 二、…

HTTP和HTTPS协议

目录 一、HTTP和HTTPS区别🌻 二、有了https还有使用http场景吗🍊 三、https协议的工作原理💥 四、https协议的优点和缺点🍞 一、HTTP和HTTPS区别🌻 HTTP(Hypertext Transfer Protocol)和HTT…

时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 基于KNN K近邻的时间序列预测-递归预测未来(多指标评价) …

macOS - 安装使用 libvirt、virsh

文章目录 关于 libvirt使用安装启动服务virsh 交互模式virsh 帮助命令 关于 libvirt libvirt 官网: https://libvirt.org/gitlab : https://gitlab.com/libvirt/libvirtgithub : https://github.com/libvirt/libvirt 只读,gitlab 的镜像 libvirt是一套…

机器学习之数据集

目录 1、简介 2、可用数据集 3、scikit-learn数据集API 3.1、小数据集 3.2、大数据集 4、数据集使用 ⭐所属专栏:人工智能 文中提到的代码如有需要可以私信我发给你😊 1、简介 当谈论数据集时,通常是指在机器学习和数据分析中使用的一组…

ES 概念

es 概念 Elasticsearch是分布式实时搜索、实时分析、实时存储引擎,简称(ES)成立于2012年,是一家来自荷兰的、开源的大数据搜索、分析服务提供商,为企业提供实时搜索、数据分析服务,支持PB级的大数据。 -- …

logstash 原理(含部署)

1、ES原理 原理 使⽤filebeat来上传⽇志数据,logstash进⾏⽇志收集与处理,elasticsearch作为⽇志存储与搜索引擎,最后使⽤kibana展现⽇志的可视化输出。所以不难发现,⽇志解析主要还 是logstash做的事情 从上图中可以看到&#x…

RDMA概述

1. DMA和RDMA概念 1.1 DMA DMA(直接内存访问)是一种能力,允许在计算机主板上的设备直接把数据发送到内存中去,数据搬运不需要CPU的参与。 传统内存访问需要通过CPU进行数据copy来移动数据,通过CPU将内存中的Buffer1移动到Buffer2中。DMA模…

【图像分类】理论篇 (4)图像增强opencv实现

随机旋转 随机旋转是一种图像增强技术,它通过将图像以随机角度进行旋转来增加数据的多样性,从而帮助改善模型的鲁棒性和泛化能力。这在训练深度学习模型时尤其有用,可以使模型更好地适应各种角度的输入。 原图像: 旋转后的图像&…

1.MySQL数据库的基本操作

数据库操作过程: 1.用户在客户端输入 SQL 2.客户端会把 SQL 通过网络发送给服务器 3.服务器执行这个 SQL,把结果返回给客户端 4.客户端收到结果,显示到界面上 数据库的操作 这里的数据库不是代表一个软件,而是代表一个数据集合。 显示当前的数据库 …

Golang通过alibabaCanal订阅MySQLbinlog

最近在做redis和MySQL的缓存一致性,一个方式是订阅MySQL的BinLog文件,我们使用阿里巴巴的Canal的中间件来做。 Canal是服务端和客户端两部分构成,我们需要先启动Canal的服务端,然后在Go程序里面连接Canal服务端,即可监…

Maven - 统一构建规范:Maven 插件管理最佳实践

文章目录 Available Plugins开源项目中的使用插件介绍maven-jar-pluginmaven-assembly-pluginmaven-shade-pluginShade 插件 - 标签artifactSetrelocationsfilters 完整配置 Available Plugins https://maven.apache.org/plugins/index.html Maven 是一个开源的软件构建工具&…

新疆大学841软件工程考研

1.软件生产的发展经历了三个阶段,分别是____、程序系统时代和软件工程时代时代。 2.可行性研究从以下三个方面研究每种解决方法的可行性:经济可行性、社会可行性和_____。 3.HIPO图的H图用于描述软件的层次关系&…

创建maven的Springboot项目出现错误:Cannot access alimaven

创建maven的Springboot项目出现错误:Cannot access alimaven 1)问题2) 分析问题3)解决问题 1)问题 创建maven的Springboot项目出现错误: Cannot access alimaven (http://maven.aliyun.com/nexus/content/groups/p…

Redis辅助功能

一、Redis队列 1.1、订阅 subscribe ch1 ch2 1.2 publish:发布消息 publish channel message 1.3 unsubscribe: 退订 channel 1.4 模式匹配 psubscribe ch* 模糊发布&#xff0c;订阅&#xff0c;退订&#xff0c; p* <channelName> 1.5 发布订阅原理 订阅某个频道或…

05-基础入门-系统及数据库等

基础入门-系统及数据库等 一、操作系统层面1、识别操作系统常见方法2、简要两者区别及识别意义3、操作系统层面漏洞类型对应意义4、简要操作系统层面漏洞影响范围 二、数据库层面1、识别数据库类型常见方法2、数据库类型区别及识别意义3、数据库常见漏洞类型及攻击4、简要数据库…

word在页眉页脚添加第几页

如果直接在页脚添加数字&#xff0c;整个文档的页脚会是统一的。 这里我们需要的是每一页按照页码排布的文档&#xff0c;所以首先打开页脚设置&#xff1a; 在插入内选择页脚 在弹出的下拉窗口中选择空白即可 在菜单栏会多出“页眉和页脚”的选项卡&#xff0c;选择其中的页…

【CTFshow】——PWN签到题

文章目录 一【题目环境】二【题目类别】三【题目编号】四【题目描述】五【解题思路】六【解题过程】七【提交结果】 一【题目环境】 名称版本Ubuntu系统22.04.1 LTSLinux内核5.15.0-43-generic 二【题目类别】 此题无特殊类别&#xff0c;为入门题 三【题目编号】 PWN签到…

【2022吴恩达机器学习课程视频翻译笔记】3.3代价函数公式

忙了一阵子&#xff0c;回来继续更新 3.3 代价函数公式 In order to implement linear regression. The first key step is first to define something called a cost function. This is something we’ll build in this video, and the cost function will tell us how well…