时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)

目录

    • 时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)
      • 预测结果
      • 基本介绍
      • 程序设计
      • 参考资料

预测结果

1

2
3
4
5
6

基本介绍

基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)
1.Matlab实现KNN K近邻时间序列预测未来;
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

  • 完整程序和数据获取方式1:私信博主回复基于KNN K近邻的时间序列预测-递归预测未来(多指标评价),同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):基于KNN K近邻的时间序列预测-递归预测未来(多指标评价);
  • 完整程序和数据下载方式3(订阅《KNN最近邻》专栏,同时可阅读《KNN最近邻》专栏内容,数据订阅后私信我获取):基于KNN K近邻的时间序列预测-递归预测未来(多指标评价),专栏外只能获取该程序
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132093256

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/38446.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

macOS - 安装使用 libvirt、virsh

文章目录 关于 libvirt使用安装启动服务virsh 交互模式virsh 帮助命令 关于 libvirt libvirt 官网: https://libvirt.org/gitlab : https://gitlab.com/libvirt/libvirtgithub : https://github.com/libvirt/libvirt 只读,gitlab 的镜像 libvirt是一套…

机器学习之数据集

目录 1、简介 2、可用数据集 3、scikit-learn数据集API 3.1、小数据集 3.2、大数据集 4、数据集使用 ⭐所属专栏:人工智能 文中提到的代码如有需要可以私信我发给你😊 1、简介 当谈论数据集时,通常是指在机器学习和数据分析中使用的一组…

ES 概念

es 概念 Elasticsearch是分布式实时搜索、实时分析、实时存储引擎,简称(ES)成立于2012年,是一家来自荷兰的、开源的大数据搜索、分析服务提供商,为企业提供实时搜索、数据分析服务,支持PB级的大数据。 -- …

logstash 原理(含部署)

1、ES原理 原理 使⽤filebeat来上传⽇志数据,logstash进⾏⽇志收集与处理,elasticsearch作为⽇志存储与搜索引擎,最后使⽤kibana展现⽇志的可视化输出。所以不难发现,⽇志解析主要还 是logstash做的事情 从上图中可以看到&#x…

RDMA概述

1. DMA和RDMA概念 1.1 DMA DMA(直接内存访问)是一种能力,允许在计算机主板上的设备直接把数据发送到内存中去,数据搬运不需要CPU的参与。 传统内存访问需要通过CPU进行数据copy来移动数据,通过CPU将内存中的Buffer1移动到Buffer2中。DMA模…

【图像分类】理论篇 (4)图像增强opencv实现

随机旋转 随机旋转是一种图像增强技术,它通过将图像以随机角度进行旋转来增加数据的多样性,从而帮助改善模型的鲁棒性和泛化能力。这在训练深度学习模型时尤其有用,可以使模型更好地适应各种角度的输入。 原图像: 旋转后的图像&…

1.MySQL数据库的基本操作

数据库操作过程: 1.用户在客户端输入 SQL 2.客户端会把 SQL 通过网络发送给服务器 3.服务器执行这个 SQL,把结果返回给客户端 4.客户端收到结果,显示到界面上 数据库的操作 这里的数据库不是代表一个软件,而是代表一个数据集合。 显示当前的数据库 …

Python中的MetaPathFinder

MetaPathFinder 是 Python 导入系统中的一个关键组件,它与 sys.meta_path 列表紧密相关。sys.meta_path 是一个包含 MetaPathFinder 实例的列表,这些实例用于自定义模块的查找和加载逻辑。当使用 import 语句尝试导入一个模块时,Python 会遍历…

Golang通过alibabaCanal订阅MySQLbinlog

最近在做redis和MySQL的缓存一致性,一个方式是订阅MySQL的BinLog文件,我们使用阿里巴巴的Canal的中间件来做。 Canal是服务端和客户端两部分构成,我们需要先启动Canal的服务端,然后在Go程序里面连接Canal服务端,即可监…

Maven - 统一构建规范:Maven 插件管理最佳实践

文章目录 Available Plugins开源项目中的使用插件介绍maven-jar-pluginmaven-assembly-pluginmaven-shade-pluginShade 插件 - 标签artifactSetrelocationsfilters 完整配置 Available Plugins https://maven.apache.org/plugins/index.html Maven 是一个开源的软件构建工具&…

零食量贩店热潮:小县城的新零售革命

零食量贩店热潮:小县城的新零售革命 目录 引言零食量贩店的快速崛起零食量贩店的运营模式量贩零食店在小县城的影响技术在零食量贩店的应用未来展望结论 1. 引言 近年来,零食量贩店在我国小县城迅速发展,成为一种新型的零售模式。在一条街…

flutter 二进制转字符串

通常接口返回的数据都是二进制数据 二进制转字符串:utf8二进制转字符串 onRoomMsg.body是二进制编码 utf8.decode(onRoomMsg.body)然后字符串转对象 json.decode(utf8.decode(onRoomMsg.body))然后再用fromJson解析 PrankActivityModel prankActivityModel Prank…

新疆大学841软件工程考研

1.软件生产的发展经历了三个阶段,分别是____、程序系统时代和软件工程时代时代。 2.可行性研究从以下三个方面研究每种解决方法的可行性:经济可行性、社会可行性和_____。 3.HIPO图的H图用于描述软件的层次关系&…

Android 12.0 系统systemui下拉通知栏的通知布局相关源码分析

1.前言 在android12.0的系统rom开发中,在进行systemui中的下拉通知栏的布局自定义的时候,对于原生systemui的 系统的下拉通知栏的通知布局的了解也是非常重要的,接下来就来分析下相关的下拉通知栏的通知布局的相关 源码流程,了解这些才方便对通知栏的布局做修改 2.系统sy…

创建maven的Springboot项目出现错误:Cannot access alimaven

创建maven的Springboot项目出现错误:Cannot access alimaven 1)问题2) 分析问题3)解决问题 1)问题 创建maven的Springboot项目出现错误: Cannot access alimaven (http://maven.aliyun.com/nexus/content/groups/p…

“深入探索JVM内部机制:解密Java虚拟机的工作原理“

标题:深入探索JVM内部机制:解密Java虚拟机的工作原理 摘要:本文将深入探索Java虚拟机(JVM)的内部机制,解密其工作原理。我们将介绍JVM的基本组成部分、类加载过程、内存管理和垃圾回收、即时编译器等关键概…

Linux C++ 网络编程基础(2) : TCP多线程一个server对应多个client

目录 一、linux posix线程相关函数介绍二、tcp server基础版本三、tpc服务端多线程版本四、tpc客户端代码tcp编程时, 一个server可以对应多个client, server端用多线程可以实现. linux下多线程可以使用POSIX的线程函数, 下面给出服务端和客户端的代码. 一、linux posix线程相关…

RocketMQ 单机源码部署 自定义配置文件和端口以及acl权限配置解析

思路 1、我们首先配置完 namesrv和broker和acl认证的配置文件,然后直接使用-c指定配置文件来启动程序,就会非常明了,用户名密码要大于6,第一个用户我测试着不知道为什么始终有最高权限,大家尽量不要吧第一个用户给别人…

Redis辅助功能

一、Redis队列 1.1、订阅 subscribe ch1 ch2 1.2 publish:发布消息 publish channel message 1.3 unsubscribe: 退订 channel 1.4 模式匹配 psubscribe ch* 模糊发布&#xff0c;订阅&#xff0c;退订&#xff0c; p* <channelName> 1.5 发布订阅原理 订阅某个频道或…

05-基础入门-系统及数据库等

基础入门-系统及数据库等 一、操作系统层面1、识别操作系统常见方法2、简要两者区别及识别意义3、操作系统层面漏洞类型对应意义4、简要操作系统层面漏洞影响范围 二、数据库层面1、识别数据库类型常见方法2、数据库类型区别及识别意义3、数据库常见漏洞类型及攻击4、简要数据库…