Linux I/O 调度方法

操作系统的调度有

CPU调度    CPU scheduler

IO调度       IO scheduler

 

 

IO调度器的总体目标是希望让磁头能够总是往一个方向移动,移动到底了再往反方向走,这恰恰就是现实生活中的电梯模型,所以IO调 度器也被叫做电梯. (elevator)而相应的算法也就被叫做电梯算法.

 

而Linux中IO调度的电梯算法有好几种,

as(Anticipatory),

cfq(Complete Fairness Queueing),

deadline,

noop(No Operation).

 

具体使用哪种算法我们可以在启动的时候通过内核参数elevator来指定.


一)I/O调度的4种算法

 

1)CFQ(完全公平排队I/O调度程序)

特点:
在最新的内核版本和发行版中,都选择CFQ做为默认的I/O调度器,对于通用的服务器也是最好的选择.
CFQ试图均匀地分布对I/O带宽的访问,避免进程被饿死并实现较低的延迟,是deadline和as调度器的折中.
CFQ对于多媒体应用(video,audio)和桌面系统是最好的选择.
CFQ赋予I/O请求一个优先级,而I/O优先级请求独立于进程优先级,高优先级的进程的读写不能自动地继承高的I/O优先级.


工作原理:
CFQ为每个进程/线程,单独创建一个队列来管理该进程所产生的请求,也就是说每个进程一个队列,各队列之间的调度使用时间片来调度,
以此来保证每个进程都能被很好的分配到I/O带宽.I/O调度器每次执行一个进程的4次请求.


2)NOOP(电梯式调度程序)

特点:
在Linux2.4或更早的版本的调度程序,那时只有这一种I/O调度算法.
NOOP实现了一个简单的FIFO队列,它像电梯的工作主法一样对I/O请求进行组织,当有一个新的请求到来时,它将请求合并到最近的请求之后,以此来保证请求同一介质.
NOOP倾向饿死读而利于写.
NOOP对于闪存设备,RAM,嵌入式系统是最好的选择.

电梯算法饿死读请求的解释:
因为写请求比读请求更容易.
写请求通过文件系统cache,不需要等一次写完成,就可以开始下一次写操作,写请求通过合并,堆积到I/O队列中.
读请求需要等到它前面所有的读操作完成,才能进行下一次读操作.在读操作之间有几毫秒时间,而写请求在这之间就到来,饿死了后面的读请求.

 

3)Deadline(截止时间调度程序)

特点:
通过时间以及硬盘区域进行分类,这个分类和合并要求类似于noop的调度程序.
Deadline确保了在一个截止时间内服务请求,这个截止时间是可调整的,而默认读期限短于写期限.这样就防止了写操作因为不能被读取而饿死的现象.
Deadline对数据库环境(ORACLE RAC,MySQL等)是最好的选择.


4)AS(预料I/O调度程序)

特点:
本质上与Deadline一样,但在最后一次读操作后,要等待6ms,才能继续进行对其它I/O请求进行调度.
可以从应用程序中预订一个新的读请求,改进读操作的执行,但以一些写操作为代价.
它会在每个6ms中插入新的I/O操作,而会将一些小写入流合并成一个大写入流,用写入延时换取最大的写入吞吐量.
AS适合于写入较多的环境,比如文件服务器
AS对数据库环境表现很差.

 

 

查看当前系统支持的IO调度算法
dmesg | grep -i scheduler

[root@localhost ~]# dmesg | grep -i scheduler
io scheduler noop registered
io scheduler anticipatory registered
io scheduler deadline registered
io scheduler cfq registered (default)

查看当前系统的I/O调度方法:

cat /sys/block/sda/queue/scheduler
noop anticipatory deadline [cfq]

临地更改I/O调度方法:
例如:想更改到noop电梯调度算法:
echo noop > /sys/block/sda/queue/scheduler

想永久的更改I/O调度方法:
修改内核引导参数,加入elevator=调度程序名
vi /boot/grub/menu.lst
更改到如下内容:
kernel /boot/vmlinuz-2.6.18-8.el5 ro root=LABEL=/ elevator=deadline rhgb quiet


重启之后,查看调度方法:
cat /sys/block/sda/queue/scheduler
noop anticipatory [deadline] cfq
已经是deadline了

 

 )I/O调度程序的测试


本次测试分为只读,只写,读写同时进行.
分别对单个文件600MB,每次读写2M,共读写300次.

 

1)测试磁盘读:


[root@test1 tmp]# echo deadline > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/sda1 of=/dev/null bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.81189 seconds, 92.4 MB/s

real 0m6.833s
user 0m0.001s
sys 0m4.556s
[root@test1 tmp]# echo noop > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/sda1 of=/dev/null bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.61902 seconds, 95.1 MB/s

real 0m6.645s
user 0m0.002s
sys 0m4.540s
[root@test1 tmp]# echo anticipatory > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/sda1 of=/dev/null bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 8.00389 seconds, 78.6 MB/s

real 0m8.021s
user 0m0.002s
sys 0m4.586s
[root@test1 tmp]# echo cfq > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/sda1 of=/dev/null bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 29.8 seconds, 21.1 MB/s

real 0m29.826s
user 0m0.002s
sys 0m28.606s
结果:
第一 noop:用了6.61902秒,速度为95.1MB/s
第二 deadline:用了6.81189秒,速度为92.4MB/s
第三 anticipatory:用了8.00389秒,速度为78.6MB/s
第四 cfq:用了29.8秒,速度为21.1MB/s


2)测试写磁盘:


[root@test1 tmp]# echo cfq > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/zero of=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.93058 seconds, 90.8 MB/s

real 0m7.002s
user 0m0.001s
sys 0m3.525s
[root@test1 tmp]# echo anticipatory > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/zero of=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.79441 seconds, 92.6 MB/s

real 0m6.964s
user 0m0.003s
sys 0m3.489s
[root@test1 tmp]# echo noop > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/zero of=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 9.49418 seconds, 66.3 MB/s

real 0m9.855s
user 0m0.002s
sys 0m4.075s
[root@test1 tmp]# echo deadline > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/zero of=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.84128 seconds, 92.0 MB/s

real 0m6.937s
user 0m0.002s
sys 0m3.447s

测试结果:
第一 anticipatory,用了6.79441秒,速度为92.6MB/s
第二 deadline,用了6.84128秒,速度为92.0MB/s
第三 cfq,用了6.93058秒,速度为90.8MB/s
第四 noop,用了9.49418秒,速度为66.3MB/s


3)测试同时读/写

 

[root@test1 tmp]# echo deadline > /sys/block/sda/queue/scheduler
[root@test1 tmp]# dd if=/dev/sda1 of=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 15.1331 seconds, 41.6 MB/s
[root@test1 tmp]# echo cfq > /sys/block/sda/queue/scheduler
[root@test1 tmp]# dd if=/dev/sda1 of=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 36.9544 seconds, 17.0 MB/s
[root@test1 tmp]# echo anticipatory > /sys/block/sda/queue/scheduler
[root@test1 tmp]# dd if=/dev/sda1 of=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 23.3617 seconds, 26.9 MB/s
[root@test1 tmp]# echo noop > /sys/block/sda/queue/scheduler
[root@test1 tmp]# dd if=/dev/sda1 of=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 17.508 seconds, 35.9 MB/s

测试结果:
第一 deadline,用了15.1331秒,速度为41.6MB/s
第二 noop,用了17.508秒,速度为35.9MB/s
第三 anticipatory,用了23.3617秒,速度为26.9MS/s
第四 cfq,用了36.9544秒,速度为17.0MB/s

 

三)ionice

 

ionice可以更改任务的类型和优先级,不过只有cfq调度程序可以用ionice.


有三个例子说明ionice的功能:

 

采用cfq的实时调度,优先级为7
ionice -c1 -n7 -ptime dd if=/dev/sda1 of=/tmp/test bs=2M count=300&


采用缺省的磁盘I/O调度,优先级为3
ionice -c2 -n3 -ptime dd if=/dev/sda1 of=/tmp/test bs=2M count=300&


采用空闲的磁盘调度,优先级为0
ionice -c3 -n0 -ptime dd if=/dev/sda1 of=/tmp/test bs=2M count=300&

 

ionice的三种调度方法,实时调度最高,其次是缺省的I/O调度,最后是空闲的磁盘调度.
ionice的磁盘调度优先级有8种,最高是0,最低是7.


注意,磁盘调度的优先级与进程nice的优先级没有关系.
一个是针对进程I/O的优先级,一个是针对进程CPU的优先级.

 

Anticipatory I/O scheduler                适用于大多数环境,但不太合适数据库应用

Deadline I/O scheduler                     通常与Anticipatory相当,但更简洁小巧,更适合于数据库应用

CFQ I/O scheduler                            为所有进程分配等量的带宽,适合于桌面多任务及多媒体应用,默认IO调度器

Default I/O scheduler

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/383415.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

编译libcurl

1.下载源码后,执行./buidconf产生configure配置文件 2.通过build.sh来设定configure 配置的参数 #!/bin/sh # export CFLAGS-O3 -w -isystem /home/xuxuequan/Ingenicwork/toolchain/mips-gcc472-glibc216-32bit/mips-linux-gnu/libc/usr/include export CPPFLAGS…

链表面试题3:将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成 的。

链表面试题3:将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成 的。 首先我们的思想是将得一个链表和第二个链表的每个结点进行比较,谁小谁就插入到新链表的最后。 首先我们要判段链表是否为空,…

gcc编译参数-fPIC的一些问题

ppc_85xx-gcc -shared -fPIC liberr.c -o liberr.so-fPIC 作用于编译阶段,告诉编译器产生与位置无关代码(Position-Independent Code),则产生的代码中,没有绝对地址,全部使用相对地址,故而代码可以被加载器加载到内存的…

双向链表的操作(创建,插入,删除)

双向链表的代码看似复杂,其实很简单,只要画图便可明白, 删除 假如要删除的结点叫pos. pos->prev->nextpos->next; pos->next->prevpos->prev; free(pos);

我使用过的Linux命令之hwclock - 查询和设置硬件时钟

我使用过的Linux命令之hwclock - 查询和设置硬件时钟 本文链接:http://codingstandards.iteye.com/blog/804830 (转载请注明出处) 用途说明 hwclock命令,与clock命令是同一个命令,主要用来查询和设置硬件时钟&#x…

二叉树的操作(前,中,后序遍历也叫深度优先遍历,非空结点的个数)递归实现

定义一个二叉树的结点 二叉树的前序遍历, 先访问根结点,再访问左,再访问右。 每次访问都要先看根结点是否为空,然后打印根结点,把此时根结点的左结点作为下一次递归的根结点,当把左结点遍历完后&#xff0…

makefile编译问题记录

1.-c选项和-C选项: -c(gcc选项):编译.c或汇编源文件,但是不作连接. 编译器输出对应于源文件的目标文件. 如:$(CC) -c ${CFLAGS} ${SRCS} -C(makefile选项):-C的是make…

二叉树的相关题(叶子结点个数,最大深度,找特殊值结点(值不重复),判断两个树是否相同,判断两个数是否为镜像树,是否为子树,)

叶子结点就是没有孩子结点,所以当当前根结点没有孩子结点的时候,就返回1,就是找到一个叶子结点,然后访问完每个不为空的结点就行,每次访问都是把当前结点的左/右结点作为新的结点,来判断。 求最大深度&…

为何线程有PID?

在linux下用 top -H -p <pid> 查询某个进程的线程 按理说&#xff0c;都是某个进程下的线程&#xff0c; 应该进程id PID一样啊&#xff0c;但实际却都不一样 实际是被PID的名字给弄混了&#xff0c;线程进程都会有自己的ID&#xff0c;这个ID就叫做PID&#xff0c;P…

关于树和二叉树的一些基本概念,基本名词解释。

二叉树的概念 概念 一棵二叉树是结点的一个有限集合&#xff0c;该集合或者为空&#xff0c;或者是由一个根节点加上两棵别称为左子树和右子树 的二叉树组成。 二叉树的特点&#xff1a; 每个结点最多有两棵子树&#xff0c;即二叉树不存在度大于2的结点。二叉树的子树有左右…

在VI中删除行尾的换行符

在vi中&#xff0c;如果要删除行尾的换行符&#xff0c;可以用如下方法 第一种情况&#xff1a;只删除单行 如有文件如下&#xff1a; [fanzfSWserver ~/tmp]$ cat names.tmp 101 Nate H. 102 John M. 104 Cassy T. 106 Mary L. 107 Isaac …

用c语言构建二叉树(重点)

结点创建 二叉树创建 我们以‘#’为NULL&#xff0c;我们要把输入进来的一个字符串转变为二叉树&#xff0c;所以我们要记住递归的每一步走到数组了哪个位置 所以我们要记住创建过程中用掉的前序个数&#xff0c;并返回&#xff0c;除此之外&#xff0c;还要加上当时的那个结点…

linux 同步IO: sync msync、fsync、fdatasync与 fflush

最近阅读leveldb源码&#xff0c;作为一个保证可靠性的kv数据库其数据与磁盘的交互可谓是极其关键&#xff0c;其中涉及到了不少内存和磁盘同步的操作和策略。为了加深理解&#xff0c;从网上整理了linux池畔同步IO相关的函数&#xff0c;这里做一个罗列和对比。大部分为copy&a…

二叉树的广度优先遍历(层序遍历)

先定义一个二叉树的结点 再创建二叉树&#xff0c;这里就不写了&#xff0c;之前的有创建二叉树的博客。 层序遍历 用到栈的思想&#xff0c; 1 先让根 节点进队列&#xff0c;2 然后读队顶元素&#xff0c;3 让他出队列4 打印它的值5 让队顶元素的左右子树进栈&#xff0…

用前序中序创建二叉树(用中序后序创建二叉树)

定义二叉树结点 比如就拿这个二叉树 前序中序创建 因为前序遍历的顺序是 根 &#xff0c; 左 &#xff0c;右。 中序的遍历是 左 根 右。 我们会很不好想&#xff0c;但我们可以用前序和中序把上面那个二叉树的遍历一边 前序遍历&#xff1a;ABDEHCFG中序遍历&#xff1a;D…

Epoll详解及源码分析

文章来源&#xff1a;http://blog.csdn.net/chen19870707/article/details/42525887 Author&#xff1a;Echo Chen&#xff08;陈斌&#xff09; Email&#xff1a;chenb19870707gmail.com Blog&#xff1a;Blog.csdn.net/chen19870707 Date&#xff1a;Jan.7th, 2015 1…

非递归实现二叉树(前序,中序,后序)c/c++实现

这里还是用到栈的思想&#xff0c;为了方便用了c的一些内容&#xff0c;把出栈&#xff0c;进栈&#xff0c;读栈顶元素用一个个函数封装起来了&#xff0c;前面做了一些处理来使用这些函数。 前序非递归 思想&#xff1a;一直走左边&#xff0c;依次进栈。等左边为空的时候&…

Linux 中统计一个进程的线程数

如果你想看到 Linux 中每个进程的线程数&#xff0c;有以下几种方法可以做到这一点。 方法一: /proc proc 伪文件系统&#xff0c;它驻留在 /proc 目录&#xff0c;这是最简单的方法来查看任何活动进程的线程数。 /proc 目录以可读文本文件形式输出&#xff0c;提供现有进程和系…

Linux_linux基础命令(增删查,权限,Linux下的重要目录,重要命令(. du, df, top, free, pstack, su, sudo).安装gcc/g++, gdb, vim )

r&#xff1a;表示可读w&#xff1a;表示可写x&#xff1a;表示可执行也可以用数字表示这一点我们会在修改文件权限说明。对于文件夹的rwx表示&#xff1a;r表示可读及可以查看文件夹内容可以ls查看w表示可写及可以向文件夹中传送内容如文件x表示可执行及可以向文件夹中可以cd进…

pthread_create会导致内存泄露

这几天一直在调试一个系统&#xff0c;系统的功能就是定时发送数据、接收数据然后解析收到的数据&#xff0c;转换成一定的格式存入数据库中。我为了并发操作&#xff0c;所以每接收到一个数据包&#xff0c;就调用pthread_create函数创建一个默认属性的线程进行处理。 系统…