【字典学习+稀疏编码Sparse Encoding】简单介绍与sklearn的实现方式

文章目录

  • 1、字典学习与稀疏编码
  • 2、sklearn的实现
  • 3、示例

1、字典学习与稀疏编码

  • 简单来说,稀疏编码就是把输入向量(信号)/ 矩阵(图像)表示为稀疏的系数向量和一组超完备基向量(字典)的线性组合。
  • 因此,稀疏编码通过上述方式以后,就可以将输入数据重构为稀疏的向量:即向量内部元素满足只有很少的几个非零元素或只有很少的几个远大于零的元素。
  • 一般情况下要求超完备基向量的个数k非常大(远大于输入数据的维度n),因为这样的基向量组合才能更容易的学到输入数据内在的结构和特征。
  • 为什么要转换为稀疏向量?

1)特征选择(Feature Selection): 直接对原始图像提取的特征很多情况下其实是有冗余成分的,就是说我们只需要关键特征识别就可以,没有必要用那么多特征,更多情况下,那些冗余信息会干扰我们最后的识别结果!而稀疏编码可以实现特征的自动选择,它会学习地去掉这些没有信息的特征,也就是把这些特征对应的权重置为0。
2)可解释性(Interpretability):另一个青睐于稀疏的理由是,模型更容易解释,即只有那几个关键特征会影响最终的结果,更容易解释。

例如患某种病的概率是y,然后我们收集到的数据x是1000维的,也就是我们需要寻找这1000种因素到底是怎么影响患上这种病的概率的。通过学习,如果最后学习到的w*就只有很少的非零元素,例如只有5个非零的wi,那么我们就有理由相信,这些对应的特征在患病分析上面提供的信息是巨大的,决策性的。也就是说,患不患这种病只和这5个因素有关,那医生就好分析多了。

  • 更多的稀疏编码的解释见该博客:https://blog.csdn.net/Julialove102123/article/details/78349811

2、sklearn的实现

  • 通过MiniBatchDictionaryLearning来实现字典学习与稀疏编码
class sklearn.decomposition.MiniBatchDictionaryLearning(n_components=None, *, alpha=1, n_iter='deprecated',
max_iter=None, fit_algorithm='lars', n_jobs=None, batch_size=256, shuffle=True, dict_init=None,
transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, verbose=False,
split_sign=False, random_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000,
callback=None, tol=0.001, max_no_improvement=10)

1)n_components:int, default=None,要提取的字典中每个基向量/atoms的个数,每个基向量的维度应该为输入向量的维度,因此字典的维度应该是(n_components, n_features)
2)alpha:float, default=1,正则化项(Lasso回归项)的权重,用于平衡稀疏性和重构误差
3)n_iter:int, default=1000,迭代的总次数,1.1版本弃用,改用max_iter
4)max_iter:int, default=None,迭代的最大次数(早停策略之前),不为None时,n_iter将被忽略
5)fit_algorithm:{‘lars’, ‘cd’}, default=’lars’,解决优化问题的算法(首先使用fit算法训练出字典), 默认为lars,最小角度回归
6)n_jobs:int, default=None,并行jobs的数量,默认为None,就是1
7)batch_size:int, default=256,每个mini-batch中的样本数量
8)shuffle:bool, default=True,在构建batch之前是否打乱样本
9)dict_init:ndarray of shape (n_components, n_features), default=None,字典的初始化值
10)transform_algorithm:{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’omp’,用于变换数据的算法,即该算法用于学习每个样本的稀疏的系数向量(即稀疏编码的结果),再对原始输入数据进行变换。每个样本的稀疏向量的维度应该等于字典中的基向量的个数,即n_components,因此对输入数据变换后的维度应该是(n_samples,n_components),每个向量都具有稀疏性。
11)transform_n_nonzero_coefs:int, default=None,在解的每一列中非零系数的数目。这只适用于algorithm='lars’和algorithm=‘omp’。如果None,则transform_n_nonzero_coefs=int(n_features / 10)。
12)transform_alpha:float, default=None,如果algorithm='lasso_lars’或algorithm=‘lasso_cd’, alpha是应用于L1范数的惩罚。如果algorithm=‘threshold’, alpha是阈值的绝对值,低于该阈值,系数将被压扁为零。如果为None,默认为alpha。
13)split_sign:bool, default=False,是否将稀疏特征向量拆分为其负部分与正部分的拼接。这可以提高下游分类器的性能。
14)random_state:int, RandomState instance or None, default=None,当dict_init未被指定时,用于初始化字典
15)positive_code:bool, default=False,是否强制编码为正
16)positive_dict:bool, default=False,是否强制字典为正
17)transform_max_iter:int, default=1000,如果algorithm=‘lasso_cd’或’lasso_lars’,执行的最大迭代次数。

  • 该类的成员变量:
    在这里插入图片描述

  • components_是学习到的字典,[n_components, n_features],表示有n_components个基向量/atom,每个基向量的维度等于输入向量的维度

  • 该类常用的的方法为:
    在这里插入图片描述

1、fit(X, y=None)
拟合X中的数据,即学习到shape为[n_components, n_features]的字典
X:待学习/待训练的样本,[n_samples, n_featues]的ndarray
返回MiniBatchDictionaryLearning类实例本身2、transform(X)
将数据X编码为字典atom/基向量的稀疏组合,返回的就是稀疏编码的结果
X:待编码的样本,[n_samples, n_featues]的ndarray
返回:编码后的结果,[n_samples, n_components]的ndarray,需要先进行fit后学习到字典再进行稀疏编码3、fit_transform(X)
字典学习+稀疏编码,就是上述两个函数的结合
X:待学习/待训练的样本,[n_samples, n_featues]的ndarray
返回:编码后的结果,[n_samples, n_features_new]的ndarray

3、示例

  • 先使用make_sparse_coded_signal构建训练样本X,是由dictionary和code相乘得到的
    在这里插入图片描述
  • 构建字典学习/稀疏编码 dict_learner,学习到的字典为:
    在这里插入图片描述
  • 最后对输入数据进行变换:
    在这里插入图片描述
import numpy as np
from sklearn.datasets import make_sparse_coded_signal
from sklearn.decomposition import MiniBatchDictionaryLearningX, dictionary, code = make_sparse_coded_signal(n_samples=100, n_components=300, n_features=20,n_nonzero_coefs=10, random_state=42)dict_learner = MiniBatchDictionaryLearning(n_components=300, batch_size=4, transform_algorithm='lasso_lars',transform_alpha=0.1, random_state=42, shuffle=False)
X_transformed = dict_learner.fit_transform(np.transpose(X))
print(X_transformed)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/38193.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ASP.NET WEB API通过SugarSql连接MySQL数据库

注意:VS2022企业版可以,社区版可能存在问题。实体名称和字段和数据库中的要一致。 1、创建项目,安装SqlSugarCore、Pomelo.EntityFrameworkCore.MySql插件 2、文件结构 2、appsettings.json { “Logging”: { “LogLevel”: { “Default”: …

搭建WebDAV服务手机ES文件浏览器远程访问

文章目录 1. 安装启用WebDAV2. 安装cpolar3. 配置公网访问地址4. 公网测试连接5. 固定连接公网地址6. 使用固定地址测试连接 有时候我们想通过移动设备访问群晖NAS 中的文件,以满足特殊需求,我们在群辉中开启WebDav服务,结合cpolar内网工具生成的公网地址,通过移动客户端ES文件…

docker通用镜像方法,程序更新时不用重新构建镜像

docker通用镜像方法,程序更新时不用重新构建镜像。更新可执行文件后,重新启动容器就可运行。 功能 1、在demo目录下添加脚本文件start.sh,里面执行demo.jar文件。 2、将demo目录映射到镜像下的 /workspace目录。 3、Dockerfile文件中默认…

台湾shopee:虾皮电商平台选品方法与市场机遇

台湾Shopee虾皮电商平台为台湾本土卖家和消费者提供了一个线上交易平台。对于想要在台湾市场做虾皮电商的卖家来说,选择合适的产品是非常重要的。本文介绍一些做虾皮电商的选品方法和策略。 首先,了解市场需求是选品的基础。在进入台湾Shopee市场之前&a…

【Spring专题】Spring之Bean的生命周期源码解析——阶段二(IOC之实例化)

目录 前言阅读准备阅读指引阅读建议 课程内容一、SpringIOC之实例化1.1 简单回顾1.2 概念回顾1.3 核心方法讲解 二、方法讲解2.1 AbstractBeanFactory#getMergedLocalBeanDefinition:合并BeanDefinition2.2 AbstractAutowireCapableBeanFactory#createBean&#xff…

安达发APS|APS排产软件之计划甘特图

在当今全球化和竞争激烈的市场环境下,制造业企业面临着巨大的压力,如何在保证产品质量、降低成本以及满足客户需求的同时,提高生产效率和竞争力成为企业需要迫切解决的问题。在这个背景下,生产计划的制定和执行显得尤为重要。然而…

2023年京东按摩仪行业数据分析(京东销售数据分析)

近年来,小家电行业凭借功能与颜值,取代黑电和白电,成为家电市场的主要增长点。在这一市场背景下,颜值更高、功能更丰富、品种更齐全的各类按摩仪,借助新消费和电子商务的风潮,陆续被推上市场。今年&#xf…

【Cocos Creator 项目实战 】消灭星星加强版(附带完整源码工程)

本文乃Siliphen原创,转载请注明出处 目录 概述 游戏整体流程 游戏框架设计 单一职责的类 主要流程控制类 核心玩法模块 UI: 游戏世界: 本文项目的代码组织结构 作者项目实践总结 场景只有一个入口脚本 尽量少在节点上挂载脚本 构…

从零构建深度学习推理框架-8 卷积算子实现

其实这一次课还蛮好理解的&#xff1a; 首先将kernel展平&#xff1a; for (uint32_t g 0; g < groups; g) {std::vector<arma::fmat> kernel_matrix_arr(kernel_count_group);arma::fmat kernel_matrix_c(1, row_len * input_c_group);for (uint32_t k 0; k < k…

macOS(m芯片)连接服务器及其进行文件传输的各种方式的详解

说明&#xff1a;使用了macOS后发现&#xff0c;win系统能使用的xshell、xftp等连接服务器及其文件传输等软件均不能使用了&#xff0c;没有兼容的版本。所以我们刚切换到mac系统该如何去适应呢。 一、连接远程服务器 macOS中前文也说道我们使用的是iterm2进行终端控制的&…

基于深度信念神经网络的矿石产量预测,基于DBN的矿石产量预测,DBN的详细原理

目录 背影 DBN神经网络的原理 DBN神经网络的定义 受限玻尔兹曼机(RBM) DBN的矿石产量预测 基本结构 主要参数 数据 MATALB代码 结果图 展望 背影 DBN是一种深度学习神经网络,拥有提取特征,非监督学习的能力,是一种非常好的分类算法,本文将DBN算法进行矿石产量预测 DB…

流量日志分析--实操

[鹤城杯 2021]流量分析 <--第一道流量分析不难,主要就是布尔盲注的流量包分析,直接查看http请求包即可我们可以通过观察看到注入成功的响应长度不同,这里成功的为978字节,失败的994字节.不要问为什么.其实也可以直接判断.978的流量比994的少了非常多 显然就是成功的(因为这里…

Docker中部署redis

1.部署redis要求 2.部署教程 连接容器中的redis redis部署完毕

大模型基础:GPT家族与提示学习

大模型基础:GPT 家族与提示学习 从 GPT-1 到 GPT-3.5 GPT(Generative Pre-trained Transformer)是 Google 于2018年提出的一种基于 Transformer 的预训练语言模型。它标志着自然语言处理领域从 RNN 时代进入 Transformer 时代。GPT 的发展历史和技术特点如下: GPT-12018年6月…

QQ附近人引流的几个详细方法,qq附近人引流脚本实操演示教程

大家好我是你们的小编一辞脚本&#xff0c;今天给大家分享新的知识&#xff0c;很开心可以在CSDN平台分享知识给大家,很多伙伴看不到代码我先录制一下视频 在给大家做代码&#xff0c;给大家分享一下qq引流脚本的知识和视频演示 不懂的小伙伴可以认真看一下&#xff0c;我们一…

【CSS】CSS 布局——常规流布局

<h1>基础文档流</h1><p>我是一个基本的块级元素。我的相邻块级元素在我的下方另起一行。</p><p>默认情况下&#xff0c;我们会占据父元素 100%的宽度&#xff0c;并且我们的高度与我们的子元素内容一样高。我们的总宽度和高度是我们的内容 内边距…

echarts-convert.js使用

echarts-convert.js demo 点击下载 1、本地安装phantom.js插件 点击下载 2、更改文件路径 &#xff08;D:\phantomjs-2.1.1-windows\bin&#xff09;改为本地项目文件路径 3、打开cmd命令行&#xff0c;并格式化语言 运行以下命令 将命令行语言改为中文简体 chcp 65001…

(二分查找) 11. 旋转数组的最小数字 ——【Leetcode每日一题】

❓剑指 Offer 11. 旋转数组的最小数字 难度&#xff1a;简单 把一个数组最开始的若干个元素搬到数组的末尾&#xff0c;我们称之为数组的旋转。 给你一个可能存在 重复 元素值的数组 numbers &#xff0c;它原来是一个升序排列的数组&#xff0c;并按上述情形进行了一次旋转…

springboot整合kafka多数据源

整合kafka多数据源 项目背景依赖配置生产者消费者消息体 项目背景 在很多与第三方公司对接的时候&#xff0c;或者处在不同的网络环境下&#xff0c;比如在互联网和政务外网的分布部署服务的时候&#xff0c;我们需要对接多台kafka来达到我们的业务需求&#xff0c;那么当kafk…

【Vue-Router】路由过渡动效

在 Vue Router 中&#xff0c;你可以通过过渡动效&#xff08;Transition Effects&#xff09;为路由切换添加平滑的过渡效果&#xff0c;从而提升用户体验。过渡动效可以使用 Vue 的 <transition> 组件和 CSS 过渡来实现。 基本使用&#xff1a; 对导航使用动画&#…