dp 扔鸡蛋_使用动态编程(DP)的鸡蛋掉落问题

dp 扔鸡蛋

Problem statement: You are given N floor and K eggs. You have to minimize the number of times you have to drop the eggs to find the critical floor where critical floor means the floor beyond which eggs start to break. Assumptions of the problem:

问题陈述:给您N楼和K蛋。 您必须尽量减少丢鸡蛋的次数,以找到关键的地板,其中关键的地板意味着鸡蛋开始破损的地板 。 问题的假设:

  1. If egg breaks at ith floor then it also breaks at all greater floors.

    如果鸡蛋在第1层破裂,那么它在所有较大的层也破裂。

  2. If egg does not break at ith floor then it does not break at all lower floors.

    如果鸡蛋没有在那么它不会在所有低层打破。

  3. Unbroken egg can be used again.

    完整的鸡蛋可以再次使用。

Note: You have to find minimum trials required to find the critical floor not the critical floor.

注意:您必须找到找到关键楼层而不是关键楼层所需的最少试验。

Constraints:

限制条件:

    1 <= N <= 1000
1 <= K <= 100

Example 1:

范例1:

    Input:
4
2
Output:
Number of trials when number of eggs is 2 and number of floors is 4: 3

Example 2:

范例2:

    Input:
36
2
Output:
Number of trials when number of eggs is 2 and number of floors is 36: 8

Explanation of the problem:

问题说明:

For the Input 1,

对于输入1,

Case 1. Drop at first floor:

案例1.降在一楼:

  1. Egg does not break:

    鸡蛋不碎:

    If egg does not break then we have three floors left and two eggs. We can either choose

    如果鸡蛋没有破裂,那么我们剩下三层楼和两个鸡蛋。 我们可以选择

    2nd or 3rd floor and proceed similarly but we can easily see we have to do atleast 3 trials.

    2 3 ,同样继续进行,但我们可以很容易地看到,我们所要做的ATLEAST 3项试验。

  2. Egg breaks:

    鸡蛋休息时间:

    If egg breaks then we found the critical floor in only 1 trial.

    如果鸡蛋破裂,那么我们仅在1次试验中发现了临界水平。

In case 1, the worst possibility is that egg does not break so trials will be 3 for case 1.

在第一种情况下,最可能的情况是鸡蛋不会破裂,因此第一种情况下的试验为3。

Case 2. Drop at second floor:

情况2。掉到二楼:

  1. Egg breaks:

    鸡蛋休息时间:

    We are left with one egg and we have to check only 1 floor so number of trials 2.

    我们只剩下一个鸡蛋,我们只需要检查1层,那么试验次数为2。

  2. Egg does not break:

    鸡蛋不碎:

    We still have two eggs and two floors to check we have to check one by one on these floors so trials needed are 3.

    我们仍然有两个鸡蛋和两个楼层要检查,我们必须在这些楼层上一个接一个地检查,因此需要进行3次试验。

So for case 2 together the worst possibility is 3.

因此,对于情况2,最坏的可能性是3。

In the end we have to find the minimum of case 1, case 2, case 3, case 4.

最后,我们必须找到情况1,情况2,情况3,情况4的最小值。

Note: Dropping from 3rd and 4th floor is same as dropping from 2nd and 1st floor respectively only difference is that subcases A and B just gets swapped.

注意:从跌落3 4层是与从 2 1层分别唯一的区别滴是子情况AB只是获取交换。

Algorithm:

算法:

  1. Create a 2D dp matrix where jth cell of ith row represents the minimum number of trials needed to check i floors using j eggs.

    创建一个二维dp矩阵,其中 i行的第j 单元格代表使用j个鸡蛋检查i个楼层所需的最小试验次数。

  2. If there are 0 eggs then there are 0 trials so initializing all cell corresponding to this situation.

    如果有0个卵,则有0个试验,因此初始化对应于这种情况的所有单元。

  3. If there are 1 egg then we have to drop egg at every floor so the number of trials is number of floors.

    如果有1个鸡蛋,那么我们必须在每个楼层放鸡蛋,这样试验的次数就是楼层数。

  4. If there are 0 floors so there are 0 trials and if there is one floor there is only one trial.

    如果楼层数为0,则试验为0,而楼层数为1,则只有一次试验。

  5. Start filling the dp matrix from egg = 2 && floors = 2.

    egg = 2 && floors = 2开始填充dp矩阵。

  6. We have to choose a floor x between the 1 – floor and then find cases when egg breaks at xth floor and egg do not break at xth floors (A and B subparts of cases).

    我们有选择的1楼之间的地板X -地板,然后找到情况下,当在X 和鸡蛋的蛋破裂不会在 X层(例AB子部分)打破。

  7. We have to take the maximum of these A and B subparts as we are taking worst case possible. Also, we will also add one to it as one trial is also needed to check xth floor.

    由于我们正在考虑最坏的情况,因此我们必须充分利用这些A和B子部分。 此外,我们还将添加一个到它也需要一个试验检查X

  8. Taking the minimum of answers of all such x's and storing at my particular number of floors and number of eggs.

    以所有这些x的最小答案,并以我的特定楼层数和鸡蛋数存储。

The time complexity of the above code is O(N * K * K).

上面代码的时间复杂度为O(N * K * K)。

使用动态编程(DP)解决鸡蛋掉落问题的C ++程序 (C++ program for Egg dropping problem using Dynamic Programming (DP))

#include <iostream>
#include <limits.h>
using namespace std;
int eggDrop(int floors, int eggs){
int dp[floors + 1][eggs + 1] = {0};
// intializing with some cases
// case 1. when there are 0 floors
for(int egg = 0;egg<=eggs;egg++){
dp[0][egg] = 0;
}
// case 2. when there are only 1 floor so there 
// are only 1 way only check the first floor
for(int egg = 0;egg<=eggs;egg++){
dp[1][egg] = 1;
}
// case 3. when there are 0 eggs
for(int floor = 0;floor <=floors;floor++){
dp[floor][0] = 0;
}
// case 4. when there are 1 egg then we have to 
// check every floor so our answer would be number of 
// floors
for(int floor = 0;floor <= floors;floor++){
dp[floor][1] = floor;
}
// we will start filling dp matrix from 
// floor = 2 && egg = 2
for(int egg = 2;egg<=eggs;egg++){
for(int floor = 2;floor<=floors;floor++){
// choosing an ith floor between 1 - floor
int mini = INT_MAX;
for(int i = 1;i<=floor;i++){
// dp[i - 1][egg-1] means to find the answer when 
// the egg is broken at ith floor
// dp[floor - i][egg] means to find the answer 
// when the egg is not broken at ith floor
int ans = max(dp[i-1][egg-1], dp[floor - i][egg]);
// by trying to check the floor i have used one trial
ans++;
// taking the minimum of all possible floor 
// possible between 1 - floor
mini = min(mini, ans); 
}
// storing the answer
dp[floor][egg] = mini;
}
}
return dp[floors][eggs];
}
// driver program
int main() {
int floors, eggs;
cin >> floors >> eggs;
cout<<"number of trials when number of eggs is " << eggs;
cout<<" and number of floors is " << floors;
cout<<": "  << eggDrop(floors,eggs);
return 0;
}

Output

输出量

4
2
number of trials when number of eggs is 2 and number of floors is 4: 3

翻译自: https://www.includehelp.com/algorithms/egg-dropping-problem-using-dynamic-programming.aspx

dp 扔鸡蛋

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/380039.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MOVSX和MOVZX

MOVSX 先符号扩展,再传送 格式&#xff1a; MOVSX 操作数A &#xff0c;操作数B //操作数B的空间小于A比如说我们使用命令&#xff1a; movsx eax&#xff0c;bxbx是16位&#xff0c;eax是32位&#xff0c;传值过程&#xff1a; 先用bx的符号位把eax高16填满&#xff0c;b…

统计学习以及支持向量机的国内外基本比较重要的书

1、支持向量机导论&#xff0c;此书乃是SVM方面的经典著作&#xff0c; 该书的作者也是近年来SVM、kernel methods学术圈内的活跃学者&#xff0c;对于这些领域均有过重要的贡献。这本书从“线性机器、核方法、统计学习理论、凸优化”四个方面揭示了SVM的内在机理 --利用核…

Java——集合(TreeSet)

package com.wsq.set; //这里进行调用Person()方法&#xff0c;要进行导包 import java.util.TreeSet; import com.wsq.bean.Person; public class Demo3_TreeSet { /*** TreeSet集合是用来对元素进行排序的&#xff0c;同样它也可以保证元素的唯一* 当compareTo()方法返…

setmonth_日期setMonth()方法以及JavaScript中的示例

setmonthJavaScript日期setMonth()方法 (JavaScript Date setMonth() method) setMonth() method is a Date class method, it is used to set the month to the Date object with a valid month value (between 0 to 11. 0 for January, 1 for February and so on). setMonth(…

LEA与XCHG

LEA 格式&#xff1a; LEA 通用寄存器 内存地址功能&#xff1a;取地址命令 将内存地址赋值给寄存器 lea eax,dword ptr ds:[ecx0x16]dword 双字 就是四个字节ptr pointer缩写 即指针ds 数据段版寄存器[]里的数据是一个地址值&#xff0c;这个地址指向一个双字型数据 将dwo…

分域名优化的时候要考虑备选IP的问题

我们在需要下载很多内容的时候&#xff0c;很容易想到做分域名的并发下载&#xff0c;给原来的服务器多分几个域名&#xff0c;因为分不同的域名可能可以在浏览器中分到更多的下载进程&#xff0c;提高下载速度。 但是在做网络应用的时候&#xff0c;我们的一个域名下面有的时候…

面试题-ASP 与 ASP.Net的区别?

比较简洁的回答&#xff1a; 1.开发语言不同&#xff0c;ASP局限于用脚本语言来开发&#xff0c;而ASP.Net可以使用C#,VB.C等来开发。 2.运行机制不同&#xff0c;ASP是解释运行的&#xff0c;执行效率较低。ASP.Net是编译性的编程框架。 3.开发方式不同&#xff0c;ASP里前台H…

Java——集合(输入5个学生的信息按总分高低排序)

题目要求&#xff1a; 键盘录入5个学生信息&#xff08;姓名&#xff0c;语文成绩&#xff0c;数学成绩&#xff0c;英语成绩&#xff09;&#xff0c;按照总分从高到低输出到控制台 分析&#xff1a; 1&#xff0c;定义一个学生类 * 成员变量&#xff1a;姓名&#xff0c;…

日期setHours()方法以及JavaScript中的示例

JavaScript Date setHours()方法 (JavaScript Date setHours() method) setHours() method is a Date class method, it is used to set the hour to the Date object with a valid hour value (between 00 to 23). setHours()方法是Date类方法&#xff0c;用于将小时设置为具有…

Google SSL zz

// Google SSL// Modified from SSL Certificates Pro//z 2011-12-29 8:59 AM is2120csdn : reader,calendar// UserScript// name Google SSL// namespace http://raychow.info/// version 2.1.2// description 强制 Google 使用安全连接。//// include htt…

阿诺德.施瓦辛格 训练方法

阿诺德.施瓦辛格 训练方法七次“奥林匹亚先生”获得者、著名影星阿诺德.施瓦辛格&#xff0c;是广大健美爱好者崇拜的偶像。即使在今天&#xff0c;他那无与伦比的二头肌和胸肌仍为人们津津乐道。本文是他通过亲身体会&#xff0c;讲述了怎样锻炼才能增长肌肉的观点和方法&…

ADC和SBB命令

ADC 带进位加法指令 用法&#xff1a; adc 操作数1&#xff0c;操作数2相当于&#xff1a; 操作数1操作数2进位标志CF->操作数1现在的eax是0&#xff0c;C1&#xff0c;用adc指令直接会是0x6 SBB 带进位减法指令 用法&#xff1a; sbb 操作数1&#xff0c;操作数2相当…

Java——集合(输入一串字符串,统计字符串中每个字符出现的次数)

A&#xff1a;案例演示 需求&#xff1a;输入一串字符串&#xff0c;统计字符串中每个字符出现的次数** 分析&#xff1a;1&#xff0c;定义一个需要被统计字符的字符串2&#xff0c;将字符串转化为字符数组&#xff0c;才能拿到每一个字符3&#xff0c;定义双列集合存储字符串…

entry数组_数组entry()方法以及JavaScript中的示例

entry数组JavaScript entry()方法 (JavaScript entries() method) entries() method is used to create an iterator object of an array to access the keys (index) and values. entry()方法用于创建数组的迭代器对象&#xff0c;以访问键(索引)和值。 Syntax: 句法&#xf…

mul和div指令(8位,16位,32位)

MUL 无符号乘法指令&#xff0c;默认操作数与eax相乘&#xff08;这里只说32位&#xff0c;其他与下面的div类似&#xff09; 格式&#xff1a; mul 操作数 //操作数只有一个操作数与eax相乘&#xff0c;结果共有16位&#xff08;这里的16位是16进制数&#xff09;&#xff…

2011年年终盘点

不知不觉又到了年底&#xff0c;我坐在电脑前&#xff0c;竭力的回忆&#xff0c;却发现回忆中一片空白&#xff0c;能记起也就那么几件事。 一、在暑假做了一个多月的电子商务 在这个过程中&#xff0c;我了解到电子商务的基本流程&#xff0c;以及一些销售技巧&#xff0c;还…

ASP.NET Application,Session,Cookie和ViewState等对象用法和区别

ASP.NET Application,Session,Cookie和ViewState等对象用法和区别 在ASP.NET中&#xff0c;有很多种保存信息的内置对象&#xff0c;如:Application,Session,Cookie,ViewState和Cache等。下面分别介绍它们的用法和区别。 方法 信息量大小 作用域和保存时间 应用…

Java——集合(HashMap与Hashtable的区别)

* HashMap和Hashtable的区别* 共同点&#xff1a;* 底层都是哈希算法&#xff0c;都是双列集合* 区别&#xff1a;* 1&#xff0c;HashMap是线程不安全的&#xff0c;效率高* Hashtable是线程安全的&#xff0c;效率低 * 2&#xff0c;HashMap可以存储null键和null值* Has…

判断字符串是否构成回文_构成字符串回文的最小删除数

判断字符串是否构成回文Problem statement: 问题陈述&#xff1a; Given string str find the minimum number of deletions such that the resultant string is a palindrome. 给定的字符串str找到最小的删除数&#xff0c;以使最终的字符串成为回文。 Input:Each input con…

imul和idiv指令

imul 有符号乘法指令&#xff0c;分单操作数&#xff0c;双操作数和但操作数 单操作数&#xff1a;此形式与mul指令使用完全相同&#xff0c;操作数乘以al、ax、或eax寄存器中的值&#xff0c;乘积分别存储到ax、dx&#xff1a;ax或edx&#xff1a;eax中 执行指令&#xff1a…