判断字符串是否构成回文
Problem statement:
问题陈述:
Given string str find the minimum number of deletions such that the resultant string is a palindrome.
给定的字符串str找到最小的删除数,以使最终的字符串成为回文。
Input:
Each input consists of the string str
Output:
Print the minimum number of characters
to be deleted to make the string a palindrome
Constraints:
String length will be under 1000
Example:
例:
Input:
String str: "includecpni"
Output:
4
Explanation of Example:
示例说明:
So, we need to find the longest palindromic subsequence
and delete the rest of the characters.
Here,
The longest palindromic sub-sequences are:
Inclcni
Incucni
Incdcni
Incecni
Incpcni
All these are of same length and are palindromes
So, minimum characters to delete are 4
Solution Approach:
解决方法:
We know what's a palindrome is? A palindrome is a string that is the same as its reverse order.
我们知道什么是回文吗? 回文是与其相反顺序相同的字符串。
That means to find the longest palindromic subsequence, we need to check the longest common subsequence between the string itself and its reverse string.
这意味着要找到最长回文子序列 ,我们需要检查字符串本身及其反向字符串之间的最长公共子序列。
So, basically
所以,基本上
LPS(s) = LCS(s,reverse(s))
Where,
LPS(s) = longest palindromic subsequence for string s
LCS(s,reverse(s)) = Longest Common subsequence for
string s and reverse of string s
So, to find the longest palindromic subsequence:
因此,要找到最长的回文子序列:
Find the reverse of the string
查找字符串的反面
Do an LCS between the string and its reverse string
在字符串及其反向字符串之间执行LCS
Result=string length-longest palindromic subsequence length
结果=字符串长度-最长回文子序列长度
1) To find the reverse of the string
1)找到字符串的反面
string reverse(string s,int n){
string p="";
for(int i=n-1;i>=0;i--)
p+=string(1,s[i]); //append characters from last
return p;
}
2) LCS between the string and its reverse string
2)字符串及其反向字符串之间的LCS
To detail how to find Longest Common subsequence b/w any two strings, go through this article, Longest Common subsequence
要详细了解如何找到任意两个字符串的最长公共子序列 ,请仔细阅读本文“ 最长公共子序列”
L = length of the string,reverse of the string
Str1 = string itself
Str2 = Reverse of the string
1. Initialize DP[l+1][l+1] to 0
2. Convert the base case of recursion:
for i=0 to l
DP[i][0]=0;
for i=0 to l
DP[0][i]=0;
Fill the DP table
for i=1 to l //i be the subproblem length for the string
for j=1 to l //j be the subproblem length for reverse of the string
if(str1[i-1]==str2[j-1])
DP[i][j]=DP[i-1][j-1]+1;
else
DP[i][j]=max(DP[i-1][j],DP[i][j-1]);
end for
end for
4. The final output will be DP[l][l]
Final step is to return minimum number of deletion which l-DP[l][l]
This will lead to the final result.
There is another way to find the longest palindromic subsequence, without using LCS. I wouldn't explain the detailed solution, rather try to think and implement your own.
还有另一种无需使用LCS即可找到最长回文子序列的方法。 我不会解释详细的解决方案,而是尝试考虑并实施自己的解决方案。
The recursion is,
递归是
LPS(I,j) = LPS(i+1,j-1)+2
if
str1[i] == str[j]
Else
LPS(I,j) = max(LPS(i+1,j), LPS(i,j-1))
Convert the above recursion into DP while taking care of base cases.
将上述递归转换为DP,同时注意基本情况。
C++ Implementation:
C ++实现:
#include <bits/stdc++.h>
using namespace std;
string reverse(string s, int n)
{
string p = "";
for (int i = n - 1; i >= 0; i--)
p += string(1, s[i]);
return p;
}
//LCS of the strings
int LCS(string s1, string s2, int n)
{
int dp[n + 1][n + 1];
for (int i = 0; i <= n; i++)
dp[0][i] = 0;
for (int i = 0; i <= n; i++)
dp[i][0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (s1[i - 1] == s2[j - 1])
dp[i][j] = 1 + dp[i - 1][j - 1];
else
dp[i][j] = std::max(dp[i][j - 1], dp[i - 1][j]);
}
}
return dp[n][n];
}
int main()
{
string s1;
cout << "Enter string:\n";
cin >> s1;
int n = s1.length();
//reverse of string
string s2 = reverse(s1, n);
//find LCS of the strings, result=n-LCS(s1,s2)
cout << "minimum characters to remove " << n - LCS(s1, s2, n) << endl;
return 0;
}
Output
输出量
Enter string:
includecpni
minimum characters to remove 4
翻译自: https://www.includehelp.com/icp/minimum-number-of-deletions-to-make-a-string-palindrome.aspx
判断字符串是否构成回文