【黑马甄选离线数仓day10_会员主题域开发_DWS和ADS层】

day10_会员主题域开发

会员主题_DWS和ADS层

DWS层开发

门店会员分类天表:
维度指标:
指标:新增注册会员数、累计注册会员数、新增消费会员数、累计消费会员数、新增复购会员数、累计复购会员数、活跃会员数、沉睡会员数、会员消费金额
维度: 时间维度(天、周、月)
​
涉及表: 门店会员分类天表
​
表字段的组成: 维度字段 + 指标结果字段

建表语句:
CREATE TABLE IF NOT EXISTS dws.dws_mem_store_member_classify_day_i(trade_date                   STRING COMMENT '统计时间',week_trade_date             STRING COMMENT '周一日期',month_trade_date            STRING COMMENT '月一日期',
​store_no                    STRING COMMENT '店铺编码',store_name                  STRING COMMENT '店铺名称',store_sale_type             BIGINT COMMENT '店铺销售类型',store_type_code             BIGINT COMMENT '分店类型',city_id                     BIGINT COMMENT '城市ID',city_name                   STRING COMMENT '城市名称',region_code                 STRING COMMENT '区域编码',region_name                 STRING COMMENT '区域名称',is_day_clear                BIGINT COMMENT '是否日清:0否,1是',
​reg_num_add                 BIGINT COMMENT '新增注册会员数',reg_num_sum                 BIGINT COMMENT '累计注册会员数',consume_num_add             BIGINT COMMENT '新增消费会员数',consume_num_sum             BIGINT COMMENT '累计消费会员数',repurchase_num_add          BIGINT COMMENT '新增复购会员数',repurchase_num_sum          BIGINT COMMENT '累计复购会员数',active_member_num           BIGINT COMMENT '活跃会员数',sleep_member_num            BIGINT COMMENT '沉睡会员数',sale_amount_bind            DECIMAL(27, 2) COMMENT '会员消费金额'
)
comment '门店会员分类天表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');
数据导入:

活跃会员:30天内有消费

沉睡会员:90天内有消费,30天内没有消费

这个需求的难点在于计算累计值。思路是 使用天进行聚合,得到每天的值,然后使用sum () over 窗口,得到累加值,对于每天的累积情况,这里需要使用拉链表的思想,即构造一个生效日期,这里使用lead() over 窗口函数,取到下一个日期,然后再用这个当日时间去卡,即可得到当日对应的累计值。

-- DWS层: 门店会员分类天
-- 注意: 以下内容仅仅以2023-11-14为例,实际需要把14-20日的所有数据都要导入对应表中
with t1 as (selecttrade_date as start_date,store_no,reg_num_add,  -- 新增注册会员数sum(reg_num_add) over(partition by store_no order by trade_date) as reg_num_sum,  -- 累计注册会员数lead(trade_date,1,'9999-99-99') over (partition by store_no order by  trade_date) as end_datefrom(  -- 先统计每天注册会员数selecttrade_date,reg_md as store_no,count(1) as reg_num_addfrom dwm.dwm_mem_member_behavior_day_iwhere is_register = 1group bytrade_date, reg_md) temp1
),
t2 as (selecttrade_date as start_date,store_no,consume_num_add, -- 新增消费会员数sum(consume_num_add) over(partition by store_no order by trade_date) as consume_num_sum,  -- 累计消费会员数lead(trade_date,1,'9999-99-99') over (partition by store_no order by  trade_date) as end_datefrom (selecttrade_date,store_no,count(1) as consume_num_addfrom dwm.dwm_mem_first_buy_igroup by  trade_date, store_no) temp2
),
t3 as (selecttrade_date as start_date,store_no,repurchase_num_add, -- 新增充值会员数sum(repurchase_num_add) over(partition by store_no order by trade_date) as repurchase_num_sum,  -- 累计充值会员数lead(trade_date,1,'9999-99-99') over (partition by store_no order by  trade_date) as end_datefrom (selecttrade_date,store_no,count(1) as repurchase_num_addfrom dwm.dwm_mem_second_buy_igroup by  trade_date, store_no) temp2
),
t4 as (-- 活跃会员数(最近30天有消费)  2023-11-14select'2023-11-14' as trade_date,bind_md as store_no,count(distinct zt_id) as  active_member_numfrom dwm.dwm_mem_member_behavior_day_iwhere trade_date <= '2023-11-14' and trade_date >= date_sub('2023-11-14',30) and is_consume = 1group by bind_md
),
t5 as (-- 沉睡会员数:  最近90天有消费 , 但是最近30天无消费select'2023-11-14' as trade_date,temp3.bind_md as store_no,count(temp3.zt_id) as sleep_member_numfrom(selectbind_md,zt_idfrom dwm.dwm_mem_member_behavior_day_iwhere trade_date <= '2023-11-14' and trade_date >= date_sub('2023-11-14',90) and is_consume = 1group by bind_md,zt_id) temp3LEFT JOIN(selectbind_md,zt_idfrom dwm.dwm_mem_member_behavior_day_iwhere trade_date <= '2023-11-14' and trade_date >= date_sub('2023-11-14',30) and is_consume = 1group by  bind_md,zt_id) temp4  on  temp3.bind_md = temp4.bind_md and temp3.zt_id =  temp4.zt_idwhere temp4.zt_id is nullgroup by  temp3.bind_md
),
t6 as (selecttrade_date,store_no,sum(real_paid_amount) as sale_amount_bindfrom dwm.dwm_mem_sell_order_iwhere trade_date = '2023-11-14'group by trade_date,store_no
),
t7 as (select'2023-11-14' as trade_date,store_no,if(start_date = '2023-11-14',reg_num_add,0) as reg_num_add,reg_num_sum,0 as consume_num_add,0 as consume_num_sum,0 as repurchase_num_add,0 as repurchase_num_sum,0 as active_member_num,0 as sleep_member_num,0 as sale_amount_bindfrom t1where start_date <= '2023-11-14' and end_date >= '2023-11-14'union allselect'2023-11-14' as trade_date,store_no,0 reg_num_add,0 as reg_num_sum,if( start_date = '2023-11-14',consume_num_add,0) as consume_num_add,consume_num_sum,0 as repurchase_num_add,0 as repurchase_num_sum,0 as active_member_num,0 as sleep_member_num,0 as sale_amount_bindfrom t2where start_date <= '2023-11-14' and end_date >= '2023-11-14'union allselect'2023-11-14' as trade_date,store_no,0 reg_num_add,0 as reg_num_sum,0 as consume_num_add,0 as consume_num_sum,if(start_date = '2023-11-14',repurchase_num_add,0) as repurchase_num_add,repurchase_num_sum,0 as active_member_num,0 as sleep_member_num,0 as sale_amount_bindfrom t3where start_date <= '2023-11-14' and end_date >= '2023-11-14'union allselecttrade_date,store_no,0 reg_num_add,0 as reg_num_sum,0 as consume_num_add,0 as consume_num_sum,0 as repurchase_num_add,0 as repurchase_num_sum,active_member_num,0 as sleep_member_num,0 as sale_amount_bindfrom t4union allselecttrade_date,store_no,0 reg_num_add,0 as reg_num_sum,0 as consume_num_add,0 as consume_num_sum,0 as repurchase_num_add,0 as repurchase_num_sum,0 as active_member_num,sleep_member_num,0 as sale_amount_bindfrom t5union allselecttrade_date,store_no,0 reg_num_add,0 as reg_num_sum,0 as consume_num_add,0 as consume_num_sum,0 as repurchase_num_add,0 as repurchase_num_sum,0 as active_member_num,0 as sleep_member_num,sale_amount_bindfrom t6
)
-- insert overwrite table dws.dws_mem_store_member_classify_day_i partition (dt)
selectt7.trade_date,t8.week_trade_date,t8.month_trade_date,t7.store_no,t9.store_name,t9.store_sale_type,t9.store_type_code,t9.city_id,t9.city_name,t9.region_code,t9.region_name,t9.is_day_clear,sum(t7.reg_num_add) as reg_num_add,sum(t7.reg_num_sum) as reg_num_sum,sum(t7.consume_num_add) as consume_num_add,sum(t7.consume_num_sum) as consume_num_sum,sum(t7.repurchase_num_add) as repurchase_num_add,sum(t7.repurchase_num_sum) as repurchase_num_sum,sum(t7.active_member_num) as active_member_num,sum(t7.sleep_member_num) as sleep_member_num,sum(t7.sale_amount_bind) as sale_amount_bind,t7.trade_date as dt
from t7left join dim.dwd_dim_date_f t8 on t7.trade_date = t8.trade_date-- 注意: 一定要检查自己的dwd_dim_store_i分区目录,此处填写自己的分区目录时间left join dim.dwd_dim_store_i t9 on t7.store_no = t9.store_no and t9.dt ='2023-11-23'
group byt7.trade_date,t8.week_trade_date,t8.month_trade_date,t7.store_no,t9.store_name,t9.store_sale_type,t9.store_type_code,t9.city_id,t9.city_name,t9.region_code,t9.region_name,t9.is_day_clear;
门店会员统计天表:
维度指标:
指标: 门店销售额、门店总订单量、当日注册人数、累计注册会员数、当日注册且充值会员数、当日注册且充值且消费会员数、当日注册且消费会员数、充值会员数、充值金额、累计会员充值金额、当日有余额的会员人数、当日会员余额、余额消费人数/单量、余额支付金额、余额消费金额、会员消费人数/单量、会员消费金额、会员首单人数/订单量/销售额、会员非首单人数/订单量/销售额
维度: 时间维度(天、周、月)涉及表:门店会员统计天表表字段的组成: 维度字段 + 指标结果字段

建表语句:
CREATE TABLE IF NOT EXISTS dws.dws_mem_store_member_statistics_day_i(trade_date                  STRING COMMENT '统计时间',week_trade_date             STRING COMMENT '周一日期',month_trade_date            STRING COMMENT '月一日期',store_no                    STRING COMMENT '店铺编码',store_name                  STRING COMMENT '店铺名称',store_sale_type             BIGINT COMMENT '店铺销售类型',store_type_code             BIGINT COMMENT '分店类型',city_id                     BIGINT COMMENT '城市ID',city_name                   STRING COMMENT '城市名称',region_code                 STRING COMMENT '区域编码',region_name                 STRING COMMENT '区域名称',is_day_clear                BIGINT COMMENT '是否日清:0否,1是',store_sale_amount           DECIMAL(27, 2) COMMENT '门店销售金额',store_orders_number         BIGINT COMMENT '门店总订单量',register_member_num         BIGINT COMMENT '当日注册人数',register_member_num_all     BIGINT COMMENT '累计注册会员数',register_recharge_num       BIGINT COMMENT '当日注册且充值会员数',rg_rc_td_num                BIGINT COMMENT '当日注册且充值且消费会员数',register_trade_num          BIGINT COMMENT '当日注册且消费会员数',recharge_member_num         BIGINT COMMENT '充值会员数',recharge_amount             DECIMAL(27, 2) COMMENT '充值金额',recharge_amount_all         DECIMAL(27, 2) COMMENT '累计会员充值金额',remain_member_num           BIGINT COMMENT '当日有余额的会员人数',remain_member_amount        DECIMAL(27, 2) COMMENT '当日会员余额',balance_member_num          BIGINT COMMENT '余额消费人数',balance_member_order_num    BIGINT COMMENT '余额消费单量',balance_pay_amount          DECIMAL(27, 2) COMMENT '余额支付金额',balance_member_amount       DECIMAL(27, 2) COMMENT '余额消费金额',member_num                  BIGINT COMMENT '会员消费人数',member_order_num            BIGINT COMMENT '会员消费单量',member_amount               DECIMAL(27, 2) COMMENT '会员消费金额',member_first_num            BIGINT COMMENT '会员首单人数',member_first_order_num      BIGINT COMMENT '会员首单订单量',member_first_amount         DECIMAL(27, 2) COMMENT '会员首单销售额',member_nofirst_num          BIGINT COMMENT '会员非首单人数',member_nofirst_order_num    BIGINT COMMENT '会员非首单订单量',member_nofirst_amount       DECIMAL(27, 2) COMMENT '会员非首单销售额'
) 
comment '门店会员统计日表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');
数据导入:

门店的消费情况可以从dwm_sell_o2o_order_i表中出,

注册、充值、消费这些数据可以从dwm_mem_member_behavior_day_i中出,

余额数据可以从dwd_mem_balance_online_i中出。

需要注意的是,这里有新增的指标还有累计的指标,为了方便计算,可以分开求解。

新增指标可以大部分从dwm_mem_member_behavior_day_i中出,因为 dwm_mem_member_behavior_day_i是会员粒度的表,记录了会员的各种行为。在计算会员指标的时候,很多需要count()来计算的指标,可以转化成sum(1),根据条件进行判断即可。

-- DWS 门店会员统计宽表
-- 注意: 以下内容仅仅以2023-11-14为例,实际需要把14-20日的所有数据都要导入对应表中
with t1 as (selecttrade_date,store_no,sum(real_paid_amount) as store_sale_amount,count(if(trade_type = 0,parent_order_no,NULL)) - count(if(trade_type = 5,parent_order_no,NULL)) as store_orders_number,0 as register_member_num,0 as register_member_num_all,0 as register_recharge_num,0 as rg_rc_td_num,0 as register_trade_num,0 as recharge_member_num,0 as recharge_amount,0 as recharge_amount_all,0 as remain_member_num,0 as remain_member_amount,0 as balance_member_num,0 as balance_member_order_num,0 as balance_pay_amount,0 as balance_member_amount,0 as member_num,0 as member_order_num,0 as member_amount,0 as member_first_num,0 as member_first_order_num,0 as member_first_amount,0 as member_nofirst_num,0 as member_nofirst_order_num,0 as member_nofirst_amountfrom dwm.dwm_sell_o2o_order_i where dt = '2023-11-14'group by trade_date,store_nounion allselecttrade_date,bind_md as store_no,0 as store_sale_amount, -- 门店销售额0 as store_orders_number, -- 门店总订单量sum(is_register) as register_member_num, -- 当日注册人数0 as register_member_num_all, -- 累计注册人数sum(if(is_register = 1 and  is_recharge = 1, 1,0)) as register_recharge_num, -- 当日注册且充值会员数sum(if(is_register = 1 and  is_recharge = 1 and is_consume = 1, 1,0)) as rg_rc_td_num, -- 当日注册 且充值且消费会员数sum(if(is_register = 1  and is_consume = 1, 1,0)) as register_trade_num, -- 当日注册且消费会员数sum(is_recharge) as recharge_member_num, -- 充值会员数sum(if( is_recharge = 1,recharge_amount,0) ) as recharge_amount, -- 充值金额0 as recharge_amount_all, -- 累计会员充值金额0 as remain_member_num, -- 当日有余额的会员人数0 as remain_member_amount, -- 当日会员余额sum(is_balance_consume) as balance_member_num,  --余额消费人数sum(if(is_balance_consume = 1, balance_consume_times, 0)) as balance_member_order_num, --余额消费单量sum(if(is_balance_consume = 1, balance_pay_amount, 0))  as balance_pay_amount,  -- 余额支付金额sum(if(is_balance_consume = 1, balance_consume_amount, 0))  as balance_member_amount, -- 余额消费金额sum(is_consume) as member_num, -- 会员消费人数sum(if(is_consume = 1, consume_times, 0)) as member_order_num, -- 会员消费单量sum(if(is_consume = 1, consume_amount, 0))  as member_amount,  -- 会员消费金额sum(is_first_consume) as member_first_num, -- 会员首单人数sum(is_first_consume) as member_first_order_num, -- 会员首单订单量sum(if(is_first_consume = 1, first_consume_amount,0)) as member_first_amount, -- 会员首单销售额sum(is_consume) - sum(is_first_consume) as member_nofirst_num, -- 会员非首单人数sum(if(is_consume = 1, consume_times, 0)) -  sum(is_first_consume) as member_nofirst_order_num, -- 会员非首单订单量sum(if(is_consume = 1, consume_amount, 0)) - sum(if(is_first_consume = 1, first_consume_amount,0)) as member_nofirst_amount -- 会员非首单销售额from dwm.dwm_mem_member_behavior_day_i where dt = '2023-11-14'group by trade_date,bind_mdunion allselecttrade_date,store_no,0 as store_sale_amount,0 as store_orders_number,0 as register_member_num,0 as register_member_num_all,0 as register_recharge_num,0 as rg_rc_td_num,0 as register_trade_num,0 as recharge_member_num,0 as recharge_amount,0 as recharge_amount_all,count(1) as remain_member_num,sum(balance_amount) as remain_member_amount,0 as balance_member_num,0 as balance_member_order_num,0 as balance_pay_amount,0 as balance_member_amount,0 as member_num,0 as member_order_num,0 as member_amount,0 as member_first_num,0 as member_first_order_num,0 as member_first_amount,0 as member_nofirst_num,0 as member_nofirst_order_num,0 as member_nofirst_amountfrom dwd.dwd_mem_balance_online_i where dt = '2023-11-14'group by trade_date,store_nounion allselectstart_date as trade_date,store_no,0 as store_sale_amount,0 as store_orders_number,0 as register_member_num,register_member_num_all,0 as register_recharge_num,0 as rg_rc_td_num,0 as register_trade_num,0 as recharge_member_num,0 as recharge_amount,recharge_amount_all,0 as remain_member_num,0 as remain_member_amount,0 as balance_member_num,0 as balance_member_order_num,0 as balance_pay_amount,0 as balance_member_amount,0 as member_num,0 as member_order_num,0 as member_amount,0 as member_first_num,0 as member_first_order_num,0 as member_first_amount,0 as member_nofirst_num,0 as member_nofirst_order_num,0 as member_nofirst_amountfrom(selecttrade_date as start_date,store_no,sum(reg_num_add) over(partition by store_no order by trade_date) as register_member_num_all,  -- 累计注册会员数sum(recharge_amount) over(partition by store_no order by trade_date) as recharge_amount_all,  -- 累计充值金额lead(trade_date,1,'9999-99-99') over (partition by store_no order by  trade_date) as end_datefrom(  -- 先统计每天注册会员数selecttrade_date,bind_md as store_no,sum(is_register) as reg_num_add,sum(if(is_recharge = 1,recharge_amount,0)) as recharge_amountfrom dwm.dwm_mem_member_behavior_day_igroup bytrade_date, bind_md) temp1) twhere start_date <= '2023-11-14' and end_date >= '2023-11-14'
)
insert overwrite table dws.dws_mem_store_member_statistics_day_i partition(dt)
selectt1.trade_date,t2.week_trade_date,t2.month_trade_date,t1.store_no,t3.store_name,t3.store_sale_type,t3.store_type_code,t3.city_id,t3.city_name,t3.region_code,t3.region_name,t3.is_day_clear,sum(t1.store_sale_amount) as store_sale_amount,sum(t1.store_orders_number) as store_orders_number,sum(t1.register_member_num) as register_member_num,sum(t1.register_member_num_all) as register_member_num_all,sum(t1.register_recharge_num) as register_recharge_num,sum(t1.rg_rc_td_num) as rg_rc_td_num,sum(t1.register_trade_num) as register_trade_num,sum(t1.recharge_member_num) as recharge_member_num,sum(t1.recharge_amount) as recharge_amount,sum(t1.recharge_amount_all) as recharge_amount_all,sum(t1.remain_member_num) as remain_member_num,sum(t1.remain_member_amount) as remain_member_amount,sum(t1.balance_member_num) as balance_member_num,sum(t1.balance_member_order_num) as balance_member_order_num,sum(t1.balance_pay_amount) as balance_pay_amount,sum(t1.balance_member_amount) as balance_member_amount,sum(t1.member_num) as member_num,sum(t1.member_order_num) as member_order_num,sum(t1.member_amount) as member_amount,sum(t1.member_first_num) as member_first_num,sum(t1.member_first_order_num) as member_first_order_num,sum(t1.member_first_amount) as member_first_amount,sum(t1.member_nofirst_num) as member_nofirst_num,sum(t1.member_nofirst_order_num) as member_nofirst_order_num,sum(t1.member_nofirst_amount) as member_nofirst_amount,t1.trade_date as dt
from t1left join dim.dwd_dim_date_f t2 on t1.trade_date = t2.trade_date-- 注意: 一定要检查自己的dwd_dim_store_i分区目录,此处填写自己的分区目录时间left join dim.dwd_dim_store_i t3 on t1.store_no = t3.store_no and t3.dt ='2023-11-23'
group byt1.trade_date,t2.week_trade_date,t2.month_trade_date,t1.store_no,t3.store_name,t3.store_sale_type,t3.store_type_code,t3.city_id,t3.city_name,t3.region_code,t3.region_name,t3.is_day_clear;

ADS层开发

回顾dayofweek函数
-- dayofweek
-- 注意: dayofweek是老外从周日算,所以返回的结果和咱们中国人思路差1天
select dayofweek('2023-12-7');
-- 需求: 获取到2023-12-7所在的周中的周一日期
select date_sub('2023-12-7',if(dayofweek('2023-12-7')=1,6,dayofweek('2023-12-7')-2));-- 需求: 获取到2023-12-7所在的周中的周日日期
select date_sub('2023-12-8',if(dayofweek('2023-12-8')=1,0,dayofweek('2023-12-8')-8));-- day0fmonth
select dayofmonth('2023-12-07');
-- 需求: 获取2023-12-7所在月的第一天的日期
select date_sub('2023-12-07',dayofmonth('2023-12-07')-1);
-- 需求: 获取2023-12-7所在月的最后一天的日期
select last_day('2023-12-07');

各类会员数量统计分析
维度指标:
指标:新增注册会员数、累计注册会员数、新增消费会员数、累计消费会员数、新增复购会员数、累计复购会员数、活跃会员数、沉睡会员数、会员消费金额
维度: 时间维度(天、周、月)涉及ADS表:门店会员分类月表  和  门店会员分类周表表字段的组成: 维度字段 + 指标结果字段

门店会员分类周表
建表语句:
CREATE TABLE IF NOT EXISTS ads.ads_mem_store_member_classify_week_i(trade_date                  STRING COMMENT '周一日期',store_no                    STRING COMMENT '店铺编码',store_name                  STRING COMMENT '店铺名称',store_sale_type             BIGINT COMMENT '店铺销售类型',store_type_code             BIGINT COMMENT '分店类型',city_id                     BIGINT COMMENT '城市ID',city_name                   STRING COMMENT '城市名称',region_code                 STRING COMMENT '区域编码',region_name                 STRING COMMENT '区域名称',is_day_clear                BIGINT COMMENT '是否日清:0否,1是',reg_num_add                 BIGINT COMMENT '新增注册会员数',reg_num_sum                 BIGINT COMMENT '累计注册会员数',consume_num_add             BIGINT COMMENT '新增消费会员数',consume_num_sum             BIGINT COMMENT '累计消费会员数',repurchase_num_add          BIGINT COMMENT '新增复购会员数',repurchase_num_sum          BIGINT COMMENT '累计复购会员数',active_member_num           BIGINT COMMENT '活跃会员数',sleep_member_num            BIGINT COMMENT '沉睡会员数',sale_amount_bind            DECIMAL(27, 2) COMMENT '会员消费金额'
)
comment '门店会员分类周表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');
数据导入:

指标分为累计值和新增值,累计值可以取当周最后一天的数值、新增值可以进行聚合得到。 ​ 需要注意的是,这里计算的是一张周表,所以当考虑到数据的场景时,需要取到当周所有的数据进行聚合,以及取到当周最后一天进行取累加值。

思考: 当计算某一天对应这一周的指标, 如果获取这一周相关的数据呢?

where t.dt in (select max(dt) from dws.dws_mem_store_member_classify_day_iwhere dt>=date_sub('${inputdate}', if (dayofweek('${inputdate}') = 1, 6, dayofweek('${inputdate}') - 2)) and dt<=date_sub('${inputdate}', if (dayofweek('${inputdate}') = 1, 0, dayofweek('${inputdate}') - 8))
)

代码实现:

with t1 as (
-- 计算非累加值
selectweek_trade_date,store_no,sum(reg_num_add) as reg_num_add,sum(consume_num_add) as consume_num_add,sum(repurchase_num_add) as repurchase_num_add,sum(sale_amount_bind) as sale_amount_bind
from dws.dws_mem_store_member_classify_day_i
where dt >= date_sub('2023-11-14',if(dayofweek('2023-11-14') = 1,6, dayofweek('2023-11-14')-2 ))and dt <= date_add('2023-11-14',if(dayofweek('2023-11-14') = 1,0,-dayofweek('2023-11-14')+8))
group by week_trade_date,store_no
),
t2 as (
-- 计算 累计值
-- 如果获取这一周的最后一天呢?selectweek_trade_date as trade_date,store_no,store_name,store_sale_type,store_type_code,city_id,city_name,region_code,region_name,is_day_clear,reg_num_sum,consume_num_sum,repurchase_num_sum,active_member_num,sleep_member_numfrom dws.dws_mem_store_member_classify_day_i where dt in (selectmax(dt) as c1from dws.dws_mem_store_member_classify_day_i as twhere dt >= date_sub('2023-11-14',if(dayofweek('2023-11-14') = 1,6, dayofweek('2023-11-14')-2 ))and dt <= date_add('2023-11-14',if(dayofweek('2023-11-14') = 1,0,-dayofweek('2023-11-14')+8)))
)
insert overwrite table ads.ads_mem_store_member_classify_week_i partition (dt)
selectt2.trade_date,t2.store_no,t2.store_name,t2.store_sale_type,t2.store_type_code,t2.city_id,t2.city_name,t2.region_code,t2.region_name,t2.is_day_clear,t1.reg_num_add,t2.reg_num_sum,t1.consume_num_add,t2.consume_num_sum,t1.repurchase_num_add,t2.repurchase_num_sum,t2.active_member_num,t2.sleep_member_num,t1.sale_amount_bind,t2.trade_date as dt
from t2 left join  t1 on t2.trade_date = t1.week_trade_date and t2.store_no = t1.store_no;

门店会员分类月表
建表语句:
CREATE TABLE IF NOT EXISTS ads.ads_mem_store_member_classify_month_i(trade_date                  STRING COMMENT '月一日期',store_no                    STRING COMMENT '店铺编码',store_name                  STRING COMMENT '店铺名称',store_sale_type             BIGINT COMMENT '店铺销售类型',store_type_code             BIGINT COMMENT '分店类型',city_id                     BIGINT COMMENT '城市ID',city_name                   STRING COMMENT '城市名称',region_code                 STRING COMMENT '区域编码',region_name                 STRING COMMENT '区域名称',is_day_clear                BIGINT COMMENT '是否日清:0否,1是',reg_num_add                 BIGINT COMMENT '新增注册会员数',reg_num_sum                 BIGINT COMMENT '累计注册会员数',consume_num_add             BIGINT COMMENT '新增消费会员数',consume_num_sum             BIGINT COMMENT '累计消费会员数',repurchase_num_add          BIGINT COMMENT '新增复购会员数',repurchase_num_sum          BIGINT COMMENT '累计复购会员数',active_member_num           BIGINT COMMENT '活跃会员数',sleep_member_num            BIGINT COMMENT '沉睡会员数',sale_amount_bind            DECIMAL(27, 2) COMMENT '会员消费金额'
) 
comment '门店会员分类月表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');
数据导入:

处理思路: 同周表ads_mem_store_member_classify_week_i,改变下范围即可

思考: 如果获取一个月范围的数据呢?

select date_sub('2023-09-30',dayofmonth('2023-09-30')-1), last_day('2023-09-30')

门店会员分析
维度指标:
指标: 门店销售额、门店总订单量、当日注册人数、累计注册会员数、当日注册且充值会员数、当日注册且充值且消费会员数、当日注册且消费会员数、充值会员数、充值金额、累计会员充值金额、当日有余额的会员人数、当日会员余额、余额消费人数/单量、余额支付金额、余额消费金额、会员消费人数/单量、会员消费金额、会员首单人数/订单量/销售额、会员非首单人数/订单量/销售额
维度: 时间维度(天、周、月)涉及表: 门店会员统计周表 和 门店会员统计月表涉及表字段: 维度字段 + 指标结果字段

门店会员统计周表
建表语句:
CREATE TABLE IF NOT EXISTS ads.ads_mem_store_member_statistics_week_i(trade_date                  STRING COMMENT '周一日期',store_no                    STRING COMMENT '店铺编码',store_name                  STRING COMMENT '店铺名称',store_sale_type             BIGINT COMMENT '店铺销售类型',store_type_code             BIGINT COMMENT '分店类型',city_id                     BIGINT COMMENT '城市ID',city_name                   STRING COMMENT '城市名称',region_code                 STRING COMMENT '区域编码',region_name                 STRING COMMENT '区域名称',is_day_clear                BIGINT COMMENT '是否日清:0否,1是',store_sale_amount           DECIMAL(27, 2) COMMENT '门店销售金额',store_orders_number         BIGINT COMMENT '门店总订单量',register_member_num         BIGINT COMMENT '当日注册人数',register_member_num_all     BIGINT COMMENT '累计注册会员数',register_recharge_num       BIGINT COMMENT '当日注册且充值会员数',rg_rc_td_num                BIGINT COMMENT '当日注册且充值且消费会员数',register_trade_num          BIGINT COMMENT '当日注册且消费会员数',recharge_member_num         BIGINT COMMENT '充值会员数',recharge_amount             DECIMAL(27, 2) COMMENT '充值金额',recharge_amount_all         DECIMAL(27, 2) COMMENT '累计会员充值金额',remain_member_num           BIGINT COMMENT '当周最后一天有余额的会员人数',remain_member_amount        DECIMAL(27, 2) COMMENT '当周最后一天会员余额',balance_member_num          BIGINT COMMENT '余额消费人数',balance_member_order_num    BIGINT COMMENT '余额消费单量',balance_pay_amount          DECIMAL(27, 2) COMMENT '余额支付金额',balance_member_amount       DECIMAL(27, 2) COMMENT '余额消费金额',member_num                  BIGINT COMMENT '会员消费人数',member_order_num            BIGINT COMMENT '会员消费单量',member_amount               DECIMAL(27, 2) COMMENT '会员消费金额',member_first_num            BIGINT COMMENT '会员首单人数',member_first_order_num      BIGINT COMMENT '会员首单订单量',member_first_amount         DECIMAL(27, 2) COMMENT '会员首单销售额',member_nofirst_num          BIGINT COMMENT '会员非首单人数',member_nofirst_order_num    BIGINT COMMENT '会员非首单订单量',member_nofirst_amount       DECIMAL(27, 2) COMMENT '会员非首单销售额'
) 
comment '门店会员统计周表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');
数据导入:
指标分为三种情况:一种是状态值,比如说累计指标,register_member_num_all等,还有状态指标,remain_member_num等;另一种情况是可累加的指标,比如金额和单量等;还有一种情况是不可累积指标,比如人数。状态值可以从最新的天表中dws_mem_store_member_statistics_day_i获取。
然后以这张表作为主表,关联其他表。
可累加的指标直接从dws_mem_store_member_statistics_day_i中进行聚合得到。
不可累加的指标从dwm_mem_member_behavior_day_i中进行计算得到。

代码实现:

-- ads 门店会员统计周表
with t1 as (
-- 第一部分: 基于DWS层门店会员统计天表 获取指定天的对应这一周的数据, 对这一周进行聚合统计
selectweek_trade_date as trade_date,store_no,sum(store_sale_amount) as store_sale_amount,sum(store_orders_number) as store_orders_number,sum(register_member_num) as register_member_num,sum(register_recharge_num) as register_recharge_num,sum(rg_rc_td_num) as rg_rc_td_num,sum(register_trade_num) as register_trade_num,sum(recharge_amount) as recharge_amount,sum(balance_member_order_num) as balance_member_order_num,sum(balance_pay_amount) as balance_pay_amount,sum(balance_member_amount) as balance_member_amount,sum(member_order_num) as member_order_num,sum(member_amount) as member_amount,sum(member_first_num) as member_first_num,sum(member_first_order_num) as member_first_order_num,sum(member_first_amount) as member_first_amount,sum(member_nofirst_order_num) as member_nofirst_order_num,sum(member_nofirst_amount) as member_nofirst_amountfrom dws.dws_mem_store_member_statistics_day_i
where dt >= date_sub('2023-11-14',if(dayofweek('2023-11-14') = 1,6, dayofweek('2023-11-14')-2 ))and dt <= date_add('2023-11-14',if(dayofweek('2023-11-14') = 1,0,-dayofweek('2023-11-14')+8))
group by week_trade_date,store_no
),t2 as (selectweek_trade_date as trade_date,store_no,store_name,store_sale_type,store_type_code,city_id,city_name,region_code,region_name,is_day_clear,register_member_num_all,recharge_amount_all,remain_member_num,remain_member_amountfrom dws.dws_mem_store_member_statistics_day_i where dt in (selectmax(dt)from dws.dws_mem_store_member_statistics_day_i twhere dt >= date_sub('2023-11-14',if(dayofweek('2023-11-14') = 1,6, dayofweek('2023-11-14')-2 ))and dt <= date_add('2023-11-14',if(dayofweek('2023-11-14') = 1,0,-dayofweek('2023-11-14')+8)))
),t3 as (selectweek_trade_date as trade_date,bind_md as store_no,count( DISTINCT  if(is_recharge = 1,zt_id,NULL) ) AS recharge_member_num,count( DISTINCT  if(is_balance_consume = 1,zt_id,NULL) ) AS balance_member_num,count( DISTINCT  if(is_consume = 1,zt_id,NULL) ) AS member_num,count( DISTINCT  if(is_first_consume = 0 and consume_times > 0,zt_id,NULL) ) AS member_nofirst_numfrom dwm.dwm_mem_member_behavior_day_iwhere dt >= date_sub('2023-11-14',if(dayofweek('2023-11-14') = 1,6, dayofweek('2023-11-14')-2 ))and dt <= date_add('2023-11-14',if(dayofweek('2023-11-14') = 1,0,-dayofweek('2023-11-14')+8))group by week_trade_date,bind_md
)insert overwrite table ads.ads_mem_store_member_statistics_week_i partition (dt)
selectt2.trade_date,t2.store_no,t2.store_name,t2.store_sale_type,t2.store_type_code,t2.city_id,t2.city_name,t2.region_code,t2.region_name,t2.is_day_clear,t1.store_sale_amount,t1.store_orders_number,t1.register_member_num,t2.register_member_num_all,t1.register_recharge_num,t1.rg_rc_td_num,t1.register_trade_num,t3.recharge_member_num,t1.recharge_amount,t2.recharge_amount_all,t2.remain_member_num,t2.remain_member_amount,t3.balance_member_num,t1.balance_member_order_num,t1.balance_pay_amount,t1.balance_member_amount,t3.member_num,t1.member_order_num,t1.member_amount,t1.member_first_num,t1.member_first_order_num,t1.member_first_amount,t3.member_nofirst_num,t1.member_nofirst_order_num,t1.member_nofirst_amount,t2.trade_date as dt
from t2 left join t1 on t2.trade_date = t1.trade_date and t2.store_no = t1.store_noleft join  t3 on t2.trade_date = t3.trade_date and t2.store_no = t3.store_no;
门店会员统计月表
建表语句:
CREATE TABLE IF NOT EXISTS ads.ads_mem_store_member_statistics_month_i(trade_date                  STRING COMMENT '月一日期',store_no                    STRING COMMENT '店铺编码',store_name                  STRING COMMENT '店铺名称',store_sale_type             BIGINT COMMENT '店铺销售类型',store_type_code             BIGINT COMMENT '分店类型',city_id                     BIGINT COMMENT '城市ID',city_name                   STRING COMMENT '城市名称',region_code                 STRING COMMENT '区域编码',region_name                 STRING COMMENT '区域名称',is_day_clear                BIGINT COMMENT '是否日清:0否,1是',store_sale_amount           DECIMAL(27, 2) COMMENT '门店销售金额',store_orders_number         BIGINT COMMENT '门店总订单量',register_member_num         BIGINT COMMENT '当日注册人数',register_member_num_all     BIGINT COMMENT '累计注册会员数',register_recharge_num       BIGINT COMMENT '当日注册且充值会员数',rg_rc_td_num                BIGINT COMMENT '当日注册且充值且消费会员数',register_trade_num          BIGINT COMMENT '当日注册且消费会员数',recharge_member_num         BIGINT COMMENT '充值会员数',recharge_amount             DECIMAL(27, 2) COMMENT '充值金额',recharge_amount_all         DECIMAL(27, 2) COMMENT '累计会员充值金额',remain_member_num           BIGINT COMMENT '当月最后一天有余额的会员人数',remain_member_amount        DECIMAL(27, 2) COMMENT '当月最后一天会员余额',balance_member_num          BIGINT COMMENT '余额消费人数',balance_member_order_num    BIGINT COMMENT '余额消费单量',balance_pay_amount          DECIMAL(27, 2) COMMENT '余额支付金额',balance_member_amount       DECIMAL(27, 2) COMMENT '余额消费金额',member_num                  BIGINT COMMENT '会员消费人数',member_order_num            BIGINT COMMENT '会员消费单量',member_amount               DECIMAL(27, 2) COMMENT '会员消费金额',member_first_num            BIGINT COMMENT '会员首单人数',member_first_order_num      BIGINT COMMENT '会员首单订单量',member_first_amount         DECIMAL(27, 2) COMMENT '会员首单销售额',member_nofirst_num          BIGINT COMMENT '会员非首单人数(非去重)',member_nofirst_order_num    BIGINT COMMENT '会员非首单订单量',member_nofirst_amount       DECIMAL(27, 2) COMMENT '会员非首单销售额'
) 
comment '门店会员统计月表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');
数据导入:

同 ads_mem_store_member_statistics_week_i,改变下范围即可

ADS层其他需求(基于Presto实现)

Presto--分布式SQL查询引擎

Presto-简介
  • 背景

    大数据分析类软件发展历程。

    • ==Apache Hadoop-MapReduce==

      • 优点:统一、通用、简单的编程模型,分而治之思想处理海量数据。

      • 缺点:java学习成本高、MR执行慢、内部过程繁琐

    • ==Apache Hive==

      • 优点:SQL on Hadoop。sql语言上手方便。学习成本低。

      • 缺点:底层默认还是MapReduce引擎、慢、延迟高

    • 各种SQL类计算引擎开始出现,主要追求的就是一个问题:==计算如何更快,延迟如何降低==。

      • ==Presto/trino==

      • Spark On Hive、Spark SQL

      • Flink

      • .......

    FaceBook维护的原始版本: presto, 也叫prestoDBPresto创始人团队离职后研发并维护的: PrestoSQL 因为版权更名为Trino已经给大家整理好了对应网址如下:FaceBook维护的, Presto的官网: https://prestodb.io/    创始人团队维护的, Trino的官网: https://trino.io/	Presto创始人团队维护的, 因为版权更名为Trino: http://github.com/trinodb/trino	
    相关文章如下:Presto在有赞的实践之路: https://cloud.tencent.com/developer/news/606849 Presto更名为-Trino: https://www.sohu.com/a/441836081_106784	

  • 介绍

    Presto是一个开源的==分布式SQL查询引擎==,适用于==交互式查询==,数据量支持GB到PB字节。

    Presto的设计和编写完全是为了解决==Facebook==这样规模的商业数据仓库交互式分析和处理速度的问题。

    presto简介: 一条Presto查询可以将多个数据源进行合并,可以跨越整个组织进行分析;presto特点: Presto以分析师的需求作为目标,他们期望响应速度小于1秒到几分钟;
  • 优缺点

    # 优点
    1)Presto与Hive对比,都能够处理PB级别的海量数据分析,但Presto是基于内存运算,减少没必要的硬盘IO,所以更快。2)能够连接多个数据源,跨数据源连表查,如从Hive查询大量网站访问记录,然后从Mysql中匹配出设备信息。3)部署也比Hive简单,因为Hive是基于HDFS的,需要先部署HDFS。# 缺点
    1)虽然能够处理PB级别的海量数据分析,但不是代表Presto把PB级别都放在内存中计算的。而是根据场景,如count,avg等聚合运算,是边读数据边计算,再清内存,再读数据再计算,这种耗的内存并不高。但是连表查,就可能产生大量的临时数据,因此速度会变慢,反而Hive此时会更擅长。2)为了达到实时查询,可能会想到用它直连MySql来操作查询,这效率并不会提升,瓶颈依然在MySql,此时还引入网络瓶颈,所以会比原本直接操作数据库要慢。

Presto-架构、相关术语
  • 架构图

    Presto是一个运行在多台服务器上的分布式系统。 完整安装包括==一个coordinator和多个worker==。 由客户端提交查询,从Presto命令行CLI提交到coordinator; coordinator进行解析,分析并执行查询计划,然后分发处理队列到worker。

    整个presto是一个 M-S架构 (主从架构):coordinator: 主节点  作用: 负责接收客户端发送的SQL, 对SQL进行编译, 形成执行计划, 根据执行计划, 分发给各个从节点进行执行操作
    discovery service: 附属节点作用: 一般内嵌在主节点中, 主要负责维护从节点列表, 当从节点启动后, 都需要到 discovery 节点进行注册操作
    worker节点: 从节点作用: 负责接收coordinator传递过来任务, 对任务进行具体处理工作(读取数据, 处理数据, 将处理后结果数据返回给coordinator)
  • ==Connector== 连接器

    1、Presto通过Connector连接器来连接访问不同数据源,例如Hive或mysql。连接器功能类似于数据库的驱动程序。允许Presto使用标准API与资源进行交互。2、Presto包含几个内置连接器:JMX连接器,可访问内置系统表的System连接器,Hive连接器和旨在提供TPC-H基准数据的TPCH连接器。许多第三方开发人员都贡献了连接器,因此Presto可以访问各种数据源中的数据,比如:ES、Kafka、MongoDB、Redis、Postgre、Druid、Cassandra等。
  • ==Catalog== 连接目录: hive或者mysql等数据源

    1、Presto Catalog是数据源schema的上一级,并通过连接器访问数据源。2、例如,可以配置Hive Catalog以通过Hive Connector连接器提供对Hive信息的访问。3、在Presto中使用表时,标准表名始终是被支持的。
    例如,hive.test_data.test的标准表名将引用hive catalog中test_data schema中的test table。
    Catalog需要在Presto的配置文件中进行配置。
    
  • ==schema== 库

    Schema是组织表的一种方式。Catalog和Schema共同定义了一组可以查询的表。当使用Presto访问Hive或关系数据库(例如MySQL)时,Schema会转换为目标数据库中的对应Schema(database)。= schema通俗理解就是我们所讲的database.
    = 想一下在hive中,下面这两个sql是否相等。
    show databases; -- presto不支持
    show schemas;
  • ==table== 表

    ...

Presto-集群启停
[root@hadoop01 ~]# /export/server/presto/bin/launcher start
Started as 89560# 可以使用jps 配合kill -9命令 关闭进程
  • web UI页面

    链接: http://192.168.88.80:8090/ui/

Presto-Datagrip连接使用
  • JDBC 驱动:==presto-jdbc-0.245.1.jar==

  • JDBC 地址:==jdbc:presto://192.168.88.80:8090/hive==

  • step1:创建连接

    由于驱动比较大,好多人经常下载失败,可以按照下图关联资料中提供的包: presto-jdbc-0.245.1.jar

Presto--时间日期类型注意事项
  • ==date_format==(timestamp, format) ==> varchar

    • 作用: 将指定的日期对象转换为字符串操作

  • ==date_parse==(string, format) → timestamp

    • 作用: 用于将字符串的日期数据转换为日期对象

    select date_format( timestamp '2020-10-10 12:50:50' , '%Y/%m/%d %H:%i:%s');
    select date_format( date_parse('2020:10:10 12-50-50','%Y:%m:%d %H-%i-%s') ,'%Y/%m/%d %H:%i:%s');----
    注意: 参数一必须是日期对象所以如果传递的是字符串, 必须将先转换为日期对象:  方式一:  标识为日期对象, 但是格式必须为标准日期格式timestamp '2020-10-10 12:50:50'date '2020-10-10'方式二: 如果不标准,先用date_parse解析成为标准date_parse('2020-10-10 12:50:50','%Y-%m-%d %H:%i:%s')  扩展说明: 日期format格式说明年:%Y月:%m日:%d时:%H分:%i 秒:%s周几:%w(0..6)	
  • ==date_add==(unit, value, timestamp) → [same as input]

    • 作用: 用于对日期数据进行 加 减 操作

  • ==date_diff==(unit, timestamp1, timestamp2) → bigint

    • 作用: 用于比对两个日期之间差值

    select  date_add('hour',3,timestamp '2021-09-02 15:59:50');
    select  date_add('day',-1,timestamp '2021-09-02 15:59:50');
    select  date_add('month',-1,timestamp '2021-09-02 15:59:50');select date_diff('year',timestamp '2020-09-02 06:30:30',timestamp '2021-09-02 15:59:50')
    select date_diff('month',timestamp '2021-06-02 06:30:30',timestamp '2021-09-02 15:59:50')
    select date_diff('day',timestamp '2021-08-02 06:30:30',timestamp '2021-09-02 15:59:50')

Presto-常规优化
  • 数据存储优化

    --1)合理设置分区与Hive类似,Presto会根据元信息读取分区数据,合理的分区能减少Presto数据读取量,提升查询性能。--2)使用列式存储Presto对ORC文件读取做了特定优化,因此在Hive中创建Presto使用的表时,建议采用ORC格式存储。相对于Parquet,Presto对ORC支持更好。Parquet和ORC一样都支持列式存储,但是Presto对ORC支持更好,而Impala对Parquet支持更好。在数仓设计时,要根据后续可能的查询引擎合理设置数据存储格式。--3)使用压缩数据压缩可以减少节点间数据传输对IO带宽压力,对于需要快速解压的,建议采用Snappy压缩。--4)预先排序对于已经排序的数据,在查询的数据过滤阶段,ORC格式支持跳过读取不必要的数据。比如对于经常需要过滤的字段可以预先排序。
    
  • SQL优化

    • 列裁剪

    • 分区裁剪

    • group by优化

      • 按照数据量大小降序排列

    • order by使用limit

    • ==join时候大表放置在左边==

      ...

  • 替换非ORC格式的Hive表


Presto-内存调优
  • 内存管理机制--内存分类

    Presto管理的内存分为两大类:==user memory==和==system memory==

    • user memory用户内存

      跟用户数据相关的,比如读取用户输入数据会占据相应的内存,这种内存的占用量跟用户底层数据量大小是强相关的
    • system memory系统内存

      执行过程中衍生出的副产品,比如tablescan表扫描,write buffers写入缓冲区,跟查询输入的数据本身不强相关的内存。
  • 内存管理机制--内存池

    ==内存池中来实现分配user memory和system memory==。

    内存池为常规内存池GENERAL_POOL、预留内存池RESERVED_POOL。

    1、GENERAL_POOL:在一般情况下,一个查询执行所需要的user/system内存都是从general pool中分配的,reserved pool在一般情况下是空闲不用的。2、RESERVED_POOL:大部分时间里是不参与计算的,但是当集群中某个Worker节点的general pool消耗殆尽之后,coordinator会选择集群中内存占用最多的查询,把这个查询分配到reserved pool,这样这个大查询自己可以继续执行,而腾出来的内存也使得其它的查询可以继续执行,从而避免整个系统阻塞。注意:
    reserved pool到底多大呢?这个是没有直接的配置可以设置的,他的大小上限就是集群允许的最大的查询的大小(query.total-max-memory-per-node)。reserved pool也有缺点,一个是在普通模式下这块内存会被浪费掉了,二是大查询可以用Hive来替代。因此也可以禁用掉reserved pool(experimental.reserved-pool-enabled设置为false),那系统内存耗尽的时候没有reserved pool怎么办呢?它有一个OOM Killer的机制,对于超出内存限制的大查询SQL将会被系统Kill掉,从而避免影响整个presto。
  • 内存相关参数

    1、user memory用户内存参数
    query.max-memory-per-node:单个query操作在单个worker上user memory能用的最大值
    query.max-memory:单个query在整个集群中允许占用的最大user memory2、user+system总内存参数
    query.max-total-memory-per-node:单个query操作可在单个worker上使用的最大(user + system)内存
    query.max-total-memory:单个query在整个集群中允许占用的最大(user + system) memory当这些阈值被突破的时候,query会以insufficient memory(内存不足)的错误被终结。3、协助阻止机制
    在高内存压力下保持系统稳定。当general pool常规内存池已满时,操作会被置为blocked阻塞状态,直到通用池中的内存可用为止。此机制可防止激进的查询填满JVM堆并引起可靠性问题。4、其他参数
    memory.heap-headroom-per-node:这个内存是JVM堆中预留给第三方库的内存分配,presto无法跟踪统计,默认值是-Xmx * 0.35、结论
    GeneralPool = 服务器总内存 - ReservedPool - memory.heap-headroom-per-node - Linux系统内存常规内存池内存大小=服务器物理总内存-服务器linux操作系统内存-预留内存池大小-预留给第三方库内存
  • 内存优化建议

    • 常见的报错解决

      1、Query exceeded per-node total memory limit of xx
      适当增加query.max-total-memory-per-node。2、Query exceeded distributed user memory limit of xx
      适当增加query.max-memory。3、Could not communicate with the remote task. The node may have crashed or be under too much load
      内存不够,导致节点crash,可以查看/var/log/message。
    • 建议参数设置

      1、query.max-memory-per-node和query.max-total-memory-per-node是query操作使用的主要内存配置,因此这两个配置可以适当加大。
      memory.heap-headroom-per-node是三方库的内存,默认值是JVM-Xmx * 0.3,可以手动改小一些。1) 各节点JVM内存推荐大小: 当前节点剩余内存*80%2) 对于heap-headroom-pre-node第三方库的内存配置: 建议jvm内存的%15左右3) 在配置的时候, 不要正正好好, 建议预留一点点, 以免出现问题数据量在35TB , presto节点数量大约在30台左右 (128GB内存 + 8核CPU)   注意:
      1、query.max-memory-per-node小于query.max-total-memory-per-node。
      2、query.max-memory小于query.max-total-memory。
      3、query.max-total-memory-per-node 与memory.heap-headroom-per-node 之和必须小于 jvm max memory,也就是jvm.config 中配置的-Xmx。

ADS层开发_其他需求(Presto实现)

维度指标
需求一: 会员首次充值(统计每个会员首次充值的时间, 交易单ID以及对应门店和充值金额)
需求二: 门店新老会员消费(统计每个门店每个月新会员、老会员、全部会员、非会员的数量、消费金额、消费单量(新会员指的首次消费后30天内, 老会员指的首次消费后大于30天))
需求三: 会员复购统计(留存)(统计的指标为统计日期用户量、一日后用户量、二日后用户量、三日后用户量、四日后用户量、五日后用户量、六日后用户量)
需求四: 会员贡献(统计各个会员每天在各个门店消费单量、消费金额、消费成本、线上订单量、线上消费金额、线上消费成本、线下订单量、线下消费金额、线下消费成本)涉及表:会员首次充值表 和  门店新老会员消费月表 和 会员复购统计天表 以及 会员贡献天表

会员首次充值表
建表语句:
CREATE TABLE IF NOT EXISTS ads.ads_mem_member_first_recharge_i(trade_date_time     STRING COMMENT '交易时间',trade_date          STRING COMMENT '日期',trade_order_id      STRING COMMENT '对应的交易单id',zt_id               BIGINT COMMENT '中台 会员id',store_no            STRING COMMENT '门店编号',city_id             BIGINT COMMENT '城市ID',recharge_amount     DECIMAL(27, 2) COMMENT '充值金额'
) 
comment '会员首次充值表'
partitioned by (dt STRING COMMENT '统计日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');
数据导入:

说明: 同dwm_mem_first_buy_i

insert into  hive.ads.ads_mem_member_first_recharge_i
with t1 as (selectdate_format(trade_date,'%Y-%m-%d %H:%i:%s') as trade_date_time,date_format(trade_date,'%Y-%m-%d') as trade_date,trade_order_id,zt_id,store_no,city_id,amount as recharge_amount,row_number() over(partition by zt_id order by trade_date) as rnfrom hive.ods.ods_mem_store_amount_record_i where record_type = 2 and date_format(trade_date,'%Y-%m-%d') = '2023-11-20'
)
selectt1.trade_date_time,t1.trade_date,t1.trade_order_id,t1.zt_id,t1.store_no,t1.city_id,t1.recharge_amount,'2023-11-20' as dt
from t1left join hive.ads.ads_mem_member_first_recharge_i ton t1.zt_id = t.zt_id and t1.store_no = t.store_no and t.dt < '2023-11-20'
where rn = 1 and t.zt_id is null;
门店新老会员消费月表
建表语句:
CREATE TABLE IF NOT EXISTS ads.ads_mem_store_new_old_member_month_i(trade_date                  STRING COMMENT '月一时间',store_no                    STRING COMMENT '店铺编码',store_name                  STRING COMMENT '店铺名称',store_sale_type             BIGINT COMMENT '店铺销售类型',store_type_code             BIGINT COMMENT '分店类型',city_id                     BIGINT COMMENT '城市ID',city_name                   STRING COMMENT '城市名称',region_code                 STRING COMMENT '区域编码',region_name                 STRING COMMENT '区域名称',is_day_clear                BIGINT COMMENT '是否日清:0否,1是',member_type                 BIGINT COMMENT '会员类型:1新会员,2老会员,3会员,4非会员',member_num                  BIGINT COMMENT '消费会员数',sale_amount                 DECIMAL(27, 2) COMMENT '消费金额',order_num                   BIGINT COMMENT '消费单量'
) 
comment '门店新老会员消费月表'
partitioned by (dt STRING COMMENT '消费日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY'); 

数据导入:
新会员:首次消费后30天内的;
老会员:首次消费后大于30天;需要统计每个门店每个月新会员、老会员、全部会员、非会员的数量、消费金额、消费单量。
注意:这里是一个月表,在判断新老会员的时候,按照当月最后一天为标准,往前推30天,30天内的为新会员。比如今天是5月28日,在计算5月份的数据时,4月29日——5月28日这30天的都是新会员。而在计算4月份数据时,因为4月份已经过去了,所以以4月30日为最后一天,4月1日——4月30日为4月份的新会员。

1)在计算月表时,需要取到当月最后一天,然后以最后一天为标准,取到前30天

selecta.trade_date,date_sub(a.trade_date, 30) as day30 -- 前30天,a.month_trade_date -- 对应的月一时间
from  dim.dwd_dim_date_f a
inner join(select max(dt) mdt from dws.dws_mem_store_member_statistics_day_i -- 取到最大的分区where dt>=date_sub('${inputdate}', dayofmonth('${inputdate}') - 1)and dt<=last_day('${inputdate}') ) b
on a.trade_date = b.mdt

2)新会员:30天内首次消费的会员

取新会员,可以使用首次消费表,取前30天到当月最大一天的会员即可。

因为在hive的where语句中不能使用子查询,所以这里使用join的方式解决

with dtt as (selecta.trade_date,date_sub(a.trade_date, 30) as day30 -- 前30天,a.month_trade_date -- 对应的月一时间from  dim.dwd_dim_date_f ainner join(select max(dt) mdt from dws.dws_mem_store_member_statistics_day_i -- 取到最大的分区where dt>=date_sub('${inputdate}', dayofmonth('${inputdate}') - 1)and dt<=last_day('${inputdate}') ) bon a.trade_date = b.mdt),
zt as (select s.zt_id from dwm.dwm_mem_first_buy_i s -- 取到最大分区与其前30天的数据cross join dttwhere s.dt >= dtt.day30 and s.dt <= dtt.trade_date)

代码实现:

insert into hive.ads.ads_mem_store_new_old_member_month_i
with t1 as (selecttrade_date,date_format(date_add('day',-30,date '2023-11-20'),'%Y-%m-%d') as day30,month_trade_date,month_end_datefrom hive.dim.dwd_dim_date_f where trade_date = (selectmax(dt)from hive.dws.dws_mem_store_member_statistics_day_iwhere  dt >= date_format(date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20'),'%Y-%m-%d')and  dt < date_format(date_add('month',1,date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20')),'%Y-%m-%d'))
),
t2 as (-- 获取最近30天有过消费的新用户selecttemp1.trade_date,temp1.zt_id,temp1.store_nofrom hive.dwm.dwm_mem_first_buy_i temp1cross join t1where temp1.dt >= t1.day30 and temp1.dt <= t1.trade_date
),
t3 as (-- 获取 最近30天新用户的消费select1 as member_type,temp2.bind_md as store_no,count(distinct temp2.zt_id) as member_num,sum(consume_amount) as sale_amount,sum(consume_times) as order_numfrom hive.dwm.dwm_mem_member_behavior_day_i temp2join t2 on temp2.zt_id = t2.zt_id and temp2.bind_md = t2.store_nowhere dt >= date_format(date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20'),'%Y-%m-%d')and  dt < date_format(date_add('month',1,date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20')),'%Y-%m-%d')and consume_times > 0group bytemp2.bind_mdunion all-- 获取 老会员select2 as member_type,temp2.bind_md as store_no,count(distinct temp2.zt_id) as member_num,sum(consume_amount) as sale_amount,sum(consume_times) as order_numfrom hive.dwm.dwm_mem_member_behavior_day_i temp2left join t2 on temp2.zt_id = t2.zt_id and temp2.bind_md = t2.store_nowhere dt >= date_format(date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20'),'%Y-%m-%d')and  dt < date_format(date_add('month',1,date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20')),'%Y-%m-%d')and consume_times > 0 and t2.zt_id is nullgroup bytemp2.bind_mdunion all-- 获取 全部会员select3 as member_type,temp2.bind_md as store_no,count(distinct temp2.zt_id) as member_num,sum(consume_amount) as sale_amount,sum(consume_times) as order_numfrom hive.dwm.dwm_mem_member_behavior_day_i temp2where dt >= date_format(date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20'),'%Y-%m-%d')and  dt < date_format(date_add('month',1,date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20')),'%Y-%m-%d')and consume_times > 0group bytemp2.bind_mdunion all-- 非会员数据select4 as member_type,store_no,0 as  member_num,sum(real_paid_amount) as sale_amount,count(if(trade_type = 0,parent_order_no,NULL)) - count(if(trade_type = 5,parent_order_no,NULL)) as order_numfrom hive.dwm.dwm_sell_o2o_order_iwhere dt >= date_format(date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20'),'%Y-%m-%d')and  dt < date_format(date_add('month',1,date_add('day', -day(date '2023-11-20') + 1 ,date '2023-11-20')),'%Y-%m-%d')and  member_type = 0group by store_no
)
selectt1.month_trade_date as trade_date,t3.store_no,t4.store_name,t4.store_sale_type,t4.store_type_code,t4.city_id,t4.city_name,t4.region_code,t4.region_name,t4.is_day_clear,t3.member_type,t3.member_num,cast(t3.sale_amount as decimal(27,2)),t3.order_num,t1.month_trade_date as dt
from t3 cross join t1-- 注意: 一定要检查自己的dwd_dim_store_i分区目录,此处填写自己的分区目录时间left join hive.dim.dwd_dim_store_i t4 on t3.store_no = t4.store_no and t4.dt = '2023-11-23';
会员复购统计天表
建表语句:
CREATE TABLE IF NOT EXISTS ads.ads_mem_repurchase_day_i(trade_date                  STRING COMMENT '统计时间',store_no                    STRING COMMENT '店铺编码',store_name                  STRING COMMENT '店铺名称',store_sale_type             BIGINT COMMENT '店铺销售类型',store_type_code             BIGINT COMMENT '分店类型',city_id                     BIGINT COMMENT '城市ID',city_name                   STRING COMMENT '城市名称',region_code                 STRING COMMENT '区域编码',region_name                 STRING COMMENT '区域名称',is_day_clear                BIGINT COMMENT '是否日清:0否,1是',member_count                BIGINT COMMENT '统计日期用户量',next_member_count_1         BIGINT COMMENT '一日后用户量',next_member_count_2         BIGINT COMMENT '二日后用户量',next_member_count_3         BIGINT COMMENT '三日后用户量',next_member_count_4         BIGINT COMMENT '四日后用户量',next_member_count_5         BIGINT COMMENT '五日后用户量',next_member_count_6         BIGINT COMMENT '六日后用户量'
)
comment '会员复购统计天表'
partitioned by (dt STRING COMMENT '消费日期')
row format delimited fields terminated by ','
stored as orc
tblproperties ('orc.compress'='SNAPPY');

数据导入:

复购是一个非常重要的指标,用来衡量客户的粘性。这个需求需要统计当天下单的用户,一日、二日到六日的复购情况,为了方便后续使用,这里不直接统计复购率,而是统计人数。所以,这个需求需要统计的指标为统计日期用户量、一日后用户量、二日后用户量、三日后用户量、四日后用户量、五日后用户量、六日后用户量。本需求类似于计算留存,也就是统计当天的用户,在1日、2日、3日。。。之后是否再次购买。

	使用dwm_mem_member_behavior_day_i表进行计算。因为需求中最多需要计算六日后的用户量,所以当天中的这些消费用户,需要6天之后,才能拿到所有的数据(1日后,2日后...6日后)。换个角度看,只有6天前的数据才会稳定,6天内的分区对应的数据每天都要进行更新,所以,每天要更新6个分区的数据。如果计算n天后的复购人数,其实就是用第一天的会员与第n天的会员进行关联,这里使用左关联,关联条件为会员id以及日期 能关联上的,即是复购的用户,然后再count()则可得到相应数值。

代码实现:

-- 六天前消费用户和往后每一天的复购情况--会员主题: ADS层  会员复购天表
-- 需求: 计算某一天及相对于第一天往后六天每天的复购的人数
-- 思路: 首先知道6天前的那一天的所有的消费用户  基于这个结果 left join 往后1天的所有消费用户 left join  往后2天的所有消费用户 ...往后6天的所有消费用户
selectdate_format(date_add('day',-6,date '2023-09-20'),'%Y-%m-%d') as trade_date,s.store_no,s.store_name,s.store_sale_type,s.store_type_code,s.city_id,s.city_name,s.region_code,s.region_name,s.is_day_clear,count(day0.zt_id) as member_count,count(day1.zt_id) as next_member_count_1,count(day2.zt_id) as next_member_count_2,count(day3.zt_id) as next_member_count_3,count(day4.zt_id) as next_member_count_4,count(day5.zt_id) as next_member_count_5,count(day6.zt_id) as next_member_count_6,date_format(date_add('day',-6,date '2023-09-20'),'%Y-%m-%d') as dt
from (selectt.zt_id,t.bind_md,t.dt as after,tt.days_after1,tt.days_after2,tt.days_after3,tt.days_after4,tt.days_after5,tt.days_after6from hive.dwm.dwm_mem_member_behavior_day_i t left join hive.dim.dwd_dim_date_f tt on t.trade_date = tt.trade_datewhere dt = date_format(date_add('day',-6,date '2023-09-20'),'%Y-%m-%d') and consume_times>0
) as day0
left join (selectzt_id,bind_md,dt as after1from hive.dwm.dwm_mem_member_behavior_day_iwhere dt = date_format(date_add('day',-5,date '2023-09-20'),'%Y-%m-%d') and consume_times>0
) day1 on day0.days_after1 = day1.after1 and day0.zt_id = day1.zt_id
left join (selectzt_id,bind_md,dt as after2from hive.dwm.dwm_mem_member_behavior_day_iwhere dt = date_format(date_add('day',-4,date '2023-09-20'),'%Y-%m-%d') and consume_times>0
) day2 on day0.days_after2 = day2.after2 and day0.zt_id = day2.zt_id
left join (selectzt_id,bind_md,dt as after3from hive.dwm.dwm_mem_member_behavior_day_iwhere dt = date_format(date_add('day',-3,date '2023-09-20'),'%Y-%m-%d') and consume_times>0
) day3 on day0.days_after3 = day3.after3 and day0.zt_id = day3.zt_id
left join (selectzt_id,bind_md,dt as after4from hive.dwm.dwm_mem_member_behavior_day_iwhere dt = date_format(date_add('day',-2,date '2023-09-20'),'%Y-%m-%d') and consume_times>0
) day4 on day0.days_after4 = day4.after4 and day0.zt_id = day4.zt_id
left join (selectzt_id,bind_md,dt as after5from hive.dwm.dwm_mem_member_behavior_day_iwhere dt = date_format(date_add('day',-1,date '2023-09-20'),'%Y-%m-%d') and consume_times>0
) day5 on day0.days_after5 = day5.after5 and day0.zt_id = day5.zt_id
left join (selectzt_id,bind_md,dt as after6from hive.dwm.dwm_mem_member_behavior_day_iwhere dt = '2023-09-20' and consume_times>0
) day6 on day0.days_after6 = day6.after6 and day0.zt_id = day6.zt_id
join hive.dim.dwd_dim_store_i s on day0.bind_md = s.store_no and s.dt = '2023-09-24'
group bys.store_no,s.store_name,s.store_sale_type,s.store_type_code,s.city_id,s.city_name,s.region_code,s.region_name,s.is_day_clear;另一种写法: 直接计算出 6天 及其每一天和后面六天的数据
--会员主题: ADS层  会员复购天表
-- 需求: 计算某一天及相对于第一天往后六天每天的复购的人数
-- 思路: 首先知道6天前的那一天的所有的消费用户  基于这个结果 left join 往后1天的所有消费用户 left join  往后2天的所有消费用户 ...往后6天的所有消费用户
selectday0.after as trade_date,s.store_no,s.store_name,s.store_sale_type,s.store_type_code,s.city_id,s.city_name,s.region_code,s.region_name,s.is_day_clear,count(day0.zt_id) as member_count,count(day1.zt_id) as next_member_count_1,count(day2.zt_id) as next_member_count_2,count(day3.zt_id) as next_member_count_3,count(day4.zt_id) as next_member_count_4,count(day5.zt_id) as next_member_count_5,count(day6.zt_id) as next_member_count_6,date_format(date_add('day',-6,date '2023-09-20'),'%Y-%m-%d') as dt
from (-- 获取 统计日期前6天的所有的消费数据selectt.zt_id,t.bind_md,t.dt as after,tt.days_after1,tt.days_after2,tt.days_after3,tt.days_after4,tt.days_after5,tt.days_after6from hive.dwm.dwm_mem_member_behavior_day_i t left join hive.dim.dwd_dim_date_f tt on t.trade_date = tt.trade_datewhere dt >= date_format(date_add('day',-6,date '2023-09-20'),'%Y-%m-%d')and dt <= '2023-09-20'and consume_times>0
) as day0
left join (-- 获取 统计日期前5天和 后1天的的所有的消费数据selectzt_id,bind_md,dt as after1from hive.dwm.dwm_mem_member_behavior_day_iwhere dt >= date_format(date_add('day',-5,date '2023-09-20'),'%Y-%m-%d')and dt <= date_format(date_add('day',1,date '2023-09-20'),'%Y-%m-%d')and consume_times>0
) day1 on day0.days_after1 = day1.after1 and day0.zt_id = day1.zt_id
left join (-- 获取 统计日期前4天和 后2天的的所有的消费数据selectzt_id,bind_md,dt as after2from hive.dwm.dwm_mem_member_behavior_day_iwhere dt >= date_format(date_add('day',-4,date '2023-09-20'),'%Y-%m-%d')and dt <= date_format(date_add('day',2,date '2023-09-20'),'%Y-%m-%d')and consume_times>0
) day2 on day0.days_after2 = day2.after2 and day0.zt_id = day2.zt_id
left join (-- 获取 统计日期前3天和 后3天的的所有的消费数据selectzt_id,bind_md,dt as after3from hive.dwm.dwm_mem_member_behavior_day_iwhere dt >= date_format(date_add('day',-3,date '2023-09-20'),'%Y-%m-%d')and dt <= date_format(date_add('day',3,date '2023-09-20'),'%Y-%m-%d')and consume_times>0
) day3 on day0.days_after3 = day3.after3 and day0.zt_id = day3.zt_id
left join (-- 获取 统计日期前2天和 后4天的的所有的消费数据selectzt_id,bind_md,dt as after4from hive.dwm.dwm_mem_member_behavior_day_iwhere dt >= date_format(date_add('day',-2,date '2023-09-20'),'%Y-%m-%d')and dt <= date_format(date_add('day',4,date '2023-09-20'),'%Y-%m-%d')and consume_times>0
) day4 on day0.days_after4 = day4.after4 and day0.zt_id = day4.zt_id
left join (-- 获取 统计日期前1天和 后5天的的所有的消费数据selectzt_id,bind_md,dt as after5from hive.dwm.dwm_mem_member_behavior_day_iwhere dt >= date_format(date_add('day',-1,date '2023-09-20'),'%Y-%m-%d')and dt <= date_format(date_add('day',5,date '2023-09-20'),'%Y-%m-%d')and consume_times>0
) day5 on day0.days_after5 = day5.after5 and day0.zt_id = day5.zt_id
left join (-- 获取 统计日期后6天的的所有的消费数据selectzt_id,bind_md,dt as after6from hive.dwm.dwm_mem_member_behavior_day_iwhere dt >= '2023-09-20'and dt <= date_format(date_add('day',6,date '2023-09-20'),'%Y-%m-%d')and consume_times>0
) day6 on day0.days_after6 = day6.after6 and day0.zt_id = day6.zt_id
join hive.dim.dwd_dim_store_i s on day0.bind_md = s.store_no
group byday0.after,s.store_no,s.store_name,s.store_sale_type,s.store_type_code,s.city_id,s.city_name,s.region_code,s.region_name,s.is_day_clear;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/378690.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iPad和iPhone的app图标尺寸、用途、设置方法

下面是在iPhone专用程序、iPad专用程序和通用程序中使用图标文件的指导&#xff0c;由译言网翻译自苹果官方文档。原文 http://article.yeeyan.org/view/395/100567 注意&#xff1a;图标是你的程序包所必需的组成部分。如果你没有提供程 序所需的各种尺寸的图标&#xff0c;系…

18-傅里叶变化

以时间为参照就是时域分析&#xff0c;当然时间是动态变化的 而傅里叶变换是以频域为基准的&#xff0c;不用关心动态变化&#xff0c;只关心做了多少次而已&#xff0c;次数&#xff0c;频率 傅里叶说过&#xff0c;任何一个周期函数都可以用正弦函数堆叠起来形成。强吧&#…

Opencv——DFT变换(实现两个Mat的卷积以及显示Mat的频域图像)

DFT原理&#xff1a;&#xff08;单变量离散傅里叶变换&#xff09; 数学基础&#xff1a; 任何一个函数都可以转换成无数个正弦和余弦函数的和的形式。 通常观察傅里叶变换后的频域函数可以获得两个重要的信息&#xff1a;幅频曲线和相频曲线。 在数字图像处理中的作用&#…

基于(Python下的OpenCV)图像处理的喷墨墨滴形状规范检测

通过图像处理&#xff0c;分析数码印花的喷头所喷出来的墨滴形状&#xff0c;与标准墨滴形状对比分析&#xff0c;来判断墨水及其喷头设备的状态&#xff0c;由两部分构成 PS&#xff1a;获取墨滴形状照片和标准墨滴形状照片都是手绘的&#xff0c;将就的看吧&#xff0c;主要…

微机原理——指令系统——传送类指令(MOV、LEA、LDS、LES、LAHF、SAHF、XCHG、XLAT、PUSH、POP、PUSHF、POPF)

博主联系方式&#xff1a; QQ:1540984562 QQ交流群&#xff1a;892023501 群里会有往届的smarters和电赛选手&#xff0c;群里也会不时分享一些有用的资料&#xff0c;有问题可以在群里多问问。 【没事儿可以到我主页看看】https://blog.csdn.net/qq_42604176 传送类指令1&…

mysql 任务计划 /etc/cron.d_Linux /etc/cron.d增加定时任务

一般情况下我们添加计划任务时&#xff0c;都是直接修改/etc/crontab。但是&#xff0c;不建议这样做&#xff0c;/etc/cron.d目录就是为了分项目设置计划任务而创建的。例如&#xff0c;增加一项定时的备份任务&#xff0c;我们可以这样处理&#xff1a;在/etc/cron.d目录下新…

19-Harris角点检测

角点检测顾名思义&#xff0c;就是对类似顶点的检测&#xff0c;与边缘有所区别 边缘可能在某一方向上变化不是特别明显&#xff0c;但角点在任何方向上变换都很明显 cv2.cornerHarris(img,blockSize,ksize,k) cv2.cornerHarris(gray,2,3,0.04) 参数一&#xff1a;img&#xff…

微机原理——指令系统——算数运算指令(ADD、ADC、SUB、SBB、INC、DEC、NEG、CMP、MUL、IMUL、DIV、IDIV、CBW、CWD、BCD调整)

博主联系方式&#xff1a; QQ:1540984562 QQ交流群&#xff1a;892023501 群里会有往届的smarters和电赛选手&#xff0c;群里也会不时分享一些有用的资料&#xff0c;有问题可以在群里多问问。 算数运算指令1、加减法指令ADD、ADC 、SUB 、SBB 和增量减量指令INC、DEC、NEGADD…

20-SIFT算法

import cv2 import numpy as np from matplotlib import pyplot as pltdef show_photo(name,picture):#图像显示函数cv2.imshow(name,picture)cv2.waitKey(0)cv2.destroyAllWindows()img cv2.imread(E:\Jupyter_workspace\study\data/cfx.png) gray cv2.cvtColor(img,cv2.COL…

mysql 迁移 nosql_从关系型Mysql到Nosql HBase的迁移实践

2013年11月22-23日&#xff0c;作为国内唯一专注于hadoop技术与应用分享的大规模行业盛会&#xff0c;2013 Hadoop中国技术峰会(China Hadoop Summit 2013)于北京福朋喜来登集团酒店隆重举行。来自国内外各行业领域的近千名CIO、CTO、架构师、IT经理、咨询顾问、工程师、Hadoop…

21-特征匹配方法(Brute-Force蛮力匹配)

Brute-Force蛮力匹配 cv2.BFMatcher(crossCheck True) crossCheck表示两个特征点相互匹配 例如A中的第i个特征点与B中的第j个特征点最近&#xff0c;并且B中的第j个特征点到A中的第i个特征点也是 NORM_L2&#xff1a;归一化数组的(欧几里得距离)&#xff0c;如果其他特征计算…

Opencv——几何空间变换(仿射变换和投影变换)

几何空间变换【1】几何变换&#xff08;空间变换&#xff09;简述【2】变换矩阵知识简述齐次坐标的概念几何运算矩阵【3】图像的仿射变换1、平移变换2、比例缩放3、旋转4、对称变换&#xff08;不做展示&#xff09;1、关于X轴变换2、关于Y轴变换3、关于直线YX变换4、关于直线Y…

probuffer java_Protocol Buffer的使用

Probotbuf简介在网络通信和通用数据交换等应用场景中经常使用的技术是 JSON 或 XML&#xff0c;这两种技术常被用于数据的结构化呈现和序列化。我们可以从两个方面来看JSON 和 XML与protobuf的异同&#xff1a;一个是数据结构化&#xff0c;一个是数据序列化。这里的数据结构化…

22-随机抽样一致算法RANSAC

随机抽样一致算法(Random sample consensus&#xff0c;RANSAC) 看似复杂&#xff0c;其基本思想就是&#xff1a;随机选取俩点&#xff0c;然后连接&#xff0c;给定一个容忍范围&#xff0c;在这个范围内的点越多越好&#xff0c;然后不断的迭代进行找两点之间容忍范围内点最…

23-背景建模

帧差法 由于场景中的目标在运动&#xff0c;目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧图像进行差分运算&#xff0c;不同帧对应的像素点相减&#xff0c;判断灰度差的绝对值&#xff0c;当绝对值超过一定阈值时&#xff0c;即可判断为运动目标&#xf…

DB2 9 运用开辟(733 考试)认证指南,第 3 部门: XML 数据独霸(4)

议决运用顺序存储和检索 XMLXML 编码字符编码在汗青上&#xff0c;术语 字符集、字符编码 和 码页 都有雷同的意义&#xff1a;一个字符集和一个二进制码集&#xff0c;其中每个码示意一个字符。&#xff08;码页是来自 IBM 的一个术语&#xff0c;示意一个大型主机或 IBM PC 上…

Opencv——霍夫变换以及遇到的一些问题

目录问题1 &#xff1a;颜色空间转换函数参数问题&#xff1a;CV_BGR2GRAY vs CV_GRAY2BGR问题2&#xff1a;cvRound()、cvFloor()、cvCeil()函数用法霍夫变换的含义标准霍夫直线变换霍夫线变换函数参数讲解累计概率霍夫变换霍夫变换圆变换原理和算法步骤&#xff1a;霍夫圆变换…

java ssm如何上传图片_ssm整合-图片上传功能(转)

本文介绍 ssm (SpringSpringMVCMybatis)实现上传功能。以一个添加用户的案例介绍(主要是将上传文件)。一、需求介绍我们要实现添加用户的时候上传图片(其实任何文件都可以)。文件名&#xff1a;以 博客名日期的年月日时分秒毫秒形式命名如 言曌博客2017082516403213.png路径&am…

24-光流估计

光流是空间运动物体在观测成像平面上的像素运动的“瞬间速度”&#xff0c;根据各个像素点的速度矢量特征&#xff0c;可以对图像进行动态分析&#xff0c;例如目标跟踪 亮度恒定&#xff1a;同一点随着时间的变化&#xff0c;其亮度不会发生改变 小运动&#xff1a;随着时间的…

java公平索非公平锁_java中的非公平锁不怕有的线程一直得不到执行吗

首先来看公平锁和非公平锁&#xff0c;我们默认使用的锁是非公平锁&#xff0c;只有当我们显示设置为公平锁的情况下&#xff0c;才会使用公平锁&#xff0c;下面我们简单看一下公平锁的源码&#xff0c;如果等待队列中没有节点在等待&#xff0c;则占有锁&#xff0c;如果已经…