【神经网络计算】——神经网络实现鸢尾花分类

本blog为观看MOOC视频与网易云课堂所做的笔记
课堂链接:
人工智能实践:TensorFlow笔记
吴恩达机器学习

疑问与思考

为什么按照batch喂入数据

之前看的视频里面处理数据都是一次性将所有数据喂入,现在看的这个视频对数据进行了分组投入。这是为何?
参考链接:

深度学习中的batch理解(batch size一次喂给神经网络的数据大小量)
用CNN做图像分类的时候,为什么要一批一批地输入数据?

对样本数据的处理方法:
传统的梯度下降法:用全部样本计算迭代时的梯度
随机梯度下降法(在线梯度下降法):一次只喂一个样本
batch梯度下降法:每次喂一部分样本让其完成本轮迭代
区别举例:一次性喂500个样本并迭代一次,跟一次喂1个样本迭代500次相比
第一种是将参数一次性更新500个样本的量,第二种是迭代的更新500次参数。
1、在同等的计算量之下(一定的时间内),使用整个样本集的收敛速度要远慢于使用少量样本的情况。换句话说,要想收敛到同一个最优点,使用整个样本集时,虽然迭代次数少,但是每次迭代的时间长,耗费的总时间是大于使用少量样本多次迭代的情况的。
2、样本量少的时候会带来很大的方差,会导致在下降到很差的局部最小值、鞍点震荡出收敛处,有利于向全局最小值迈进。
当样本量很多时,方差很小,对梯度的估计要准确和稳定的多,可能导致深陷局部最小值、鞍点,导致训练效果不如意
3、与GPU性能有关,GPU性能越好,同时训练的数据就越多,batch就可以越大。

代码以及展示

把打乱后的数据集中前120个数据取出来作为训练集,后30个为测试集
输入特征是4个,所以输入节点是4。只用一层网络,输出节点是分类数:3
第一层for循环针对数据集,第二层for循环针对batch。
训练集120个数据,batch是32个,,每个step只能喂入32组数据,需要batch级别循环4次。
所以除以4,得到每个循环得到的平均loss。
代码:

# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batchwith tf.GradientTape() as tape:  # with结构记录梯度信息y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracyloss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确# 计算loss对各个参数的梯度grads = tape.gradient(loss, [w1, b1])# 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_gradw1.assign_sub(lr * grads[0])  # 参数w1自更新b1.assign_sub(lr * grads[1])  # 参数b自更新# 每个epoch,打印loss信息print("Epoch {}, loss: {}".format(epoch, loss_all/4))train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备# 测试部分# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0total_correct, total_number = 0, 0for x_test, y_test in test_db:# 使用更新后的参数进行预测y = tf.matmul(x_test, w1) + b1y = tf.nn.softmax(y)pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类# 将pred转换为y_test的数据类型pred = tf.cast(pred, dtype=y_test.dtype)# 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)# 将每个batch的correct数加起来correct = tf.reduce_sum(correct)# 将所有batch中的correct数加起来total_correct += int(correct)# total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数total_number += x_test.shape[0]# 总的准确率等于total_correct/total_numberacc = total_correct / total_numbertest_acc.append(acc)print("Test_acc:", acc)print("--------------------------")# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/378324.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c# xaml语言教程,c#学习之30分钟学会XAML

1.狂妄的WPF相对传统的Windows图形编程,需要做很多复杂的工作,引用许多不同的API。例如:WinForm(带控件表单)、GDI(2D图形)、DirectXAPI(3D图形)以及流媒体和流文档等,都需要不同的API来构建应用程序。WPF就是看着上面的操作复杂和…

.NET 小结之内存模型

.NET 小结之内存模型 为什么要解.NET 的内存模型 在.NET下的内存管理、垃圾回收其实大部分不需要我们操心,因为大部分.NET已经帮我们做了,通常情况下也不需要考虑这些。但是如果想要了解一些.NET一些稍微“底层”的原理,如:“装箱…

【电设控制与图像训练题】【激光打靶】【openmv测试代码以及效果】

9.4加入串口通讯,送出靶心坐标、激光坐标、激光所在环数、方位;加入防误判操作 博主联系方式: QQ:1540984562 QQ交流群:892023501 群里会有往届的smarters和电赛选手,群里也会不时分享一些有用的资料,有问题可以在群里多问问。 目录 规则坐标系代码总结相关openmv使用文…

MVC3中的视图文件

在MVC3中的视图部分,Razor视图引擎是与以往不同的地方之一,使用Razor的视图文件再也不是以往的ASPX文件了,是cshtml文件,在新建视图的时候也会发现增加多了几类文件 由上到下分别是 MVC 3 Layout Page:与原来Web Form的…

C语言 链表拼接 PTA,PTA实验 链表拼接 (20point(s))

本题要求实现一个合并两个有序链表的简单函数。链表结点定义如下:struct ListNode {int data;struct ListNode *next;};函数接口定义:struct ListNode *mergelists(struct ListNode *list1, struct ListNode *list2);其中list1和list2是用户传入的两个按…

【TensorFlow学习笔记:神经网络优化(6讲)】

目录【1】NN复杂度【2】指数衰减学习率【3】激活函数优秀激活函数所具有的特点常见的激活函数对于初学者的建议【4】损失函数【5】缓解过拟合——正则化【6】参数优化器【1】SGD【2】SGDM(SGD基础上增加了一阶动量)【3】Adagrade(SGD基础上增加了二阶动量)【4】RMSProp(SGD基础…

第十章 开箱即用

第十章 开箱即用 “开箱即用”(batteries included)最初是由Frank Stajano提出的,指的是Python丰富的标准库。 模块 使用import将函数从外部模块导入到程序中。 import math math.sin(0)#结果为:0.0模块就是程序 在文件夹中创…

Openmv通过串口接收数据、发送数据与stm32通信

博主联系方式: QQ:1540984562 QQ交流群:892023501 群里会有往届的smarters和电赛选手,群里也会不时分享一些有用的资料,有问题可以在群里多问问。 目录 参考接线星瞳教程openmv传送数据STM32解码程序参考 接线 星瞳教程

c语言尹宝林答案,c程序设计导引 尹宝林

《C程序设计导引》特别适合作为计算机和非计算机专业学生学习高级语言程序设计的教材,也可供计算机等级考试者和其他各类学习者使用参考。17.40定价:44.75(3.89折)/2013-05-01《大学计算机优秀教材系列:C程序设计导引》是一本讲解C程序设计的…

第十一章 文件

第十一章 文件 打开文件 当前目录中有一个名为beyond.txt的文本文件,打开该文件 调用open时,原本可以不指定模式,因为其默认值就是’r’。 import io f open(beyond.txt)文件模式 值描述‘r’读取模式(默认值)‘w…

【TensorFlow学习笔记:神经网络八股】(实现MNIST数据集手写数字识别分类以及FASHION数据集衣裤识别分类)

课程来源:人工智能实践:Tensorflow笔记2 文章目录前言一、搭建网络八股sequential1.函数介绍2.6步法实现鸢尾花分类二、搭建网络八股class1.创建自己的神经网络模板:2.调用自己创建的model对象三、MNIST数据集1.用sequential搭建网络实现手写数字识别2.用…

第十二章 图形用户界面

第十二章 图形用户界面 GUI就是包含按钮、文本框等控件的窗口 Tkinter是事实上的Python标准GUI工具包 创建GUI示例应用程序 初探 导入tkinter import tkinter as tk也可导入这个模块的所有内容 from tkinter import *要创建GUI,可创建一个将充当主窗口的顶级组…

Sqlserver 2005 配置 数据库镜像:数据库镜像期间可能出现的故障:镜像超时机制

数据库镜像期间可能出现的故障 SQL Server 2005其他版本更新日期: 2006 年 7 月 17 日 物理故障、操作系统故障或 SQL Server 故障都可能导致数据库镜像会话失败。数据库镜像不会定期检查 Sqlservr.exe 所依赖的组件来验证组件是在正常运行还是已出现故障。但对于某…

【神经网络八股扩展】:自制数据集

课程来源:人工智能实践:Tensorflow笔记2 文章目录前言1、文件一览2、将load_data()函数替换掉2、调用generateds函数4、效果总结前言 本讲目标:自制数据集,解决本领域应用 将我们手中的图片和标签信息制作为可以直接导入的npy文件。 1、文件一览 首先看…

c语言输出11258循环,c/c++内存机制(一)(转)

一:C语言中的内存机制在C语言中,内存主要分为如下5个存储区:(1)栈(Stack):位于函数内的局部变量(包括函数实参),由编译器负责分配释放,函数结束,栈变量失效。(2)堆(Heap):由程序员用…

【神经网络八股扩展】:数据增强

课程来源:人工智能实践:Tensorflow笔记2 文章目录前言TensorFlow2数据增强函数数据增强网络八股代码:总结前言 本讲目标:数据增强,增大数据量 关于我们为何要使用数据增强以及常用的几种数据增强的手法,可以看看下面的文章&#…

分享WCF聊天程序--WCFChat

无意中在一个国外的站点下到了一个利用WCF实现聊天的程序,作者是:Nikola Paljetak。研究了一下,自己做了测试和部分修改,感觉还不错,分享给大家。先来看下运行效果:开启服务:客户端程序&#xf…

【神经网络扩展】:断点续训和参数提取

课程来源:人工智能实践:Tensorflow笔记2 文章目录前言断点续训主要步骤参数提取主要步骤总结前言 本讲目标:断点续训,存取最优模型;保存可训练参数至文本 断点续训主要步骤 读取模型: 先定义出存放模型的路径和文件名&#xff0…

小米手环6NFC安装太空人表盘

以前看我室友峰哥、班长都有手环,一直想买个手环,不舍得,然后今年除夕的时候降价,一狠心,入手了,配上除夕的打年兽活动还有看春晚京东敲鼓领的红包和这几年攒下来的京东豆豆,原价279的小米手环6…

为什么两层3*3卷积核效果比1层5*5卷积核效果要好?

目录1、感受野2、2层3 * 3卷积与1层5 * 5卷积3、2层3 * 3卷积与1层5 * 5卷积的计算量比较4、2层3 * 3卷积与1层5 * 5卷积的非线性比较5、2层3 * 3卷积与1层5 * 5卷积的参数量比较1、感受野 感受野:卷积神经网络各输出特征像素点,在原始图片映射区域大小。…