题目←
扩欧,求不定方程解的个数
我们已经知道通解x0 = x +- (b/gcd(a,b))t,那只要知道有多少个t使x在题目给定的范围中就行了
但还有y
怎么办?求交集!
分别二分确定在x取值范围内合法的t的范围和在y取值范围内合法的t的范围
然后交一下
值得一提的是,对于同一个t,由exgcd求出的x,y而找到的一组通解为
x + (b/gcd(a,b)) t,y - (a/gcd(a,b)) * t
或
x - (b/gcd(a,b)) * t,y + (a/gcd(a,b)) * t
当a,b同号时,应注意t是互为相反数的
对此把某一组解的范围 *= -1就好了
还有一种解法是划定范围+枚举,时间上不如二分但代码更简洁
注意特判最后几组a,b == 0的数据……
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
LL A,B,C,P,Q,R,S;
int n;
LL a,b,c,m,x,y,G;
LL Gcd(LL a,LL b){return b ? Gcd(b,a%b) : a;
}
void exgcd(LL a,LL b){if(!b){x = 1;y = 0;return;}exgcd(b,a%b);LL tmp = y;y = x - (a/b)*y;x = tmp;
}
LL lim1,lim2,lim3,lim4,liml,limr,T;
int main(){cin >> T;while(T --){scanf("%lld%lld%lld%lld%lld%lld%lld",&A,&B,&C,&P,&Q,&R,&S);if(!A && !B){if(C == 0){liml = max(P,R);limr = min(Q,S);if(limr < liml)printf("0\n");else printf("%lld\n",(Q - P + 1)*(S - R + 1));}else printf("0\n");continue;}G = Gcd(A,B);C *= -1;if(C%G){printf("0\n");continue;}a = A/G;b = B/G;c = C/G;exgcd(a,b);x *= c;y *= c;if(b < 0)b *= -1;if(a < 0)a *= -1;LL l = -100000000LL,r = 100000000LL;while(r - l > 1){LL mid = r + l >> 1;if(x + b*mid < P)l = mid;else r = mid;}lim1 = r;l = -100000000LL;r = 100000000LL;while(r - l > 1){LL mid = r + l >> 1;if(x + b*mid <= Q)l = mid;else r = mid;}lim2 = l;l = -100000000LL;r = 100000000LL;while(r - l > 1){LL mid = r + l >> 1;if(y + a*mid < R)l = mid;else r = mid;}lim3 = r;l = -100000000LL;r = 100000000LL;while(r - l > 1){LL mid = r + l >> 1;if(y + a*mid <= S)l = mid;else r = mid;}lim4 = l;if((A > 0) == (B > 0)){lim3 *= -1;lim4 *= -1;swap(lim3,lim4);}liml = max(lim1,lim3);limr = min(lim2,lim4);printf("%lld\n",max(0LL,limr - liml + 1));//cout << a << b << endl;}
}