【量化课程】02_4.数理统计的基本概念

2.4_数理统计的基本概念

数理统计思维导图

在这里插入图片描述

更多详细内容见notebook

1.基本概念

总体:研究对象的全体,它是一个随机变量,用 X X X表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体 X X X n n n个相互独立且与总体同分布的随机变量 X 1 , X 2 ⋯ , X n X_{1},X_{2}\cdots,X_{n} X1,X2,Xn,称为容量为 n n n的简单随机样本,简称样本。

统计量:设 X 1 , X 2 ⋯ , X n , X_{1},X_{2}\cdots,X_{n}, X1,X2,Xn,是来自总体 X X X的一个样本, g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}\cdots,X_{n}) g(X1,X2,Xn))是样本的连续函数,且 g ( ) g() g()中不含任何未知参数,则称 g ( X 1 , X 2 ⋯ , X n ) g(X_{1},X_{2}\cdots,X_{n}) g(X1,X2,Xn)为统计量。

样本均值
X ‾ = 1 n ∑ i = 1 n X i \overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i} X=n1i=1nXi
样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2} S2=n11i=1n(XiX)2

样本矩:样本 k k k阶原点矩: A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots Ak=n1i=1nXik,k=1,2,

样本 k k k阶中心矩 B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 1 , 2 , ⋯ B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots Bk=n1i=1n(XiX)k,k=1,2,

2.分布

χ 2 \chi^{2} χ2分布 χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 ∼ χ 2 ( n ) \chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n) χ2=X12+X22++Xn2χ2(n),其中 X 1 , X 2 ⋯ , X n , X_{1},X_{2}\cdots,X_{n}, X1,X2,Xn,相互独立,且同服从 N ( 0 , 1 ) N(0,1) N(0,1)

t t t分布 T = X Y / n ∼ t ( n ) T = \frac{X}{\sqrt{Y/n}}\sim t(n) T=Y/n Xt(n) ,其中 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) , X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n), XN(0,1),Yχ2(n), X X X Y Y Y 相互独立。

F F F分布 F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2}) F=Y/n2X/n1F(n1,n2),其中 X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) , X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}), Xχ2(n1),Yχ2(n2), X X X Y Y Y相互独立。

分位数:若 P ( X ≤ x α ) = α , P(X \leq x_{\alpha}) = \alpha, P(Xxα)=α,则称 x α x_{\alpha} xα X X X α \alpha α分位数

3.正态总体的常用样本分布

X 1 , X 2 ⋯ , X n X_{1},X_{2}\cdots,X_{n} X1,X2,Xn为来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2)的样本, X ‾ = 1 n ∑ i = 1 n X i , S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 , \overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},} X=n1i=1nXi,S2=n11i=1n(XiX)2,则:

(1) X ‾ ∼ N ( μ , σ 2 n ) \overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ } XN(μ,nσ2)  或者 X ‾ − μ σ n ∼ N ( 0 , 1 ) \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1) n σXμN(0,1)

(2) ( n − 1 ) S 2 σ 2 = 1 σ 2 ∑ i = 1 n ( X i − X ‾ ) 2 ∼ χ 2 ( n − 1 ) \frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)} σ2(n1)S2=σ21i=1n(XiX)2χ2(n1)

(3) 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)} σ21i=1n(Xiμ)2χ2(n)

(4) X ‾ − μ S / n ∼ t ( n − 1 ) {\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)   S/n Xμt(n1)

4.重要公式与结论

(1) 对于 χ 2 ∼ χ 2 ( n ) \chi^{2}\sim\chi^{2}(n) χ2χ2(n),有 E ( χ 2 ( n ) ) = n , D ( χ 2 ( n ) ) = 2 n ; E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n; E(χ2(n))=n,D(χ2(n))=2n;

(2) 对于 T ∼ t ( n ) T\sim t(n) Tt(n),有 E ( T ) = 0 , D ( T ) = n n − 2 ( n > 2 ) E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2) E(T)=0,D(T)=n2n(n>2)

(3) 对于 F ~ F ( m , n ) F\tilde{\ }F(m,n) F ~F(m,n),有 1 F ∼ F ( n , m ) , F a / 2 ( m , n ) = 1 F 1 − a / 2 ( n , m ) ; \frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)}; F1F(n,m),Fa/2(m,n)=F1a/2(n,m)1;

(4) 对于任意总体 X X X,有 E ( X ‾ ) = E ( X ) , E ( S 2 ) = D ( X ) , D ( X ‾ ) = D ( X ) n E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n} E(X)=E(X),E(S2)=D(X),D(X)=nD(X)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/36842.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【leetcode】【图解】617. 合并二叉树

题目 难度:简单 给你两棵二叉树: root1 和 root2 。 想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是&#xf…

Python web实战之Django的AJAX支持详解

关键词:Web开发、Django、AJAX、前端交互、动态网页 今天和大家分享Django的AJAX支持。AJAX可实现在网页上动态加载内容、无刷新更新数据的需求。 1. AJAX简介 AJAX(Asynchronous JavaScript and XML)是一种在网页上实现异步通信的技术。通过…

一百五十四、Kettle——Linux上安装Kettle9.3(踩坑,亲测有效,附截图)

一、目的 由于kettle8.2在Linux上安装后,共享资源库创建遇到一系列问题,所以就换成kettle9.3 二、kettle版本以及安装包网盘链接 kettle9.3.0安装包网盘链接 链接:https://pan.baidu.com/s/1MS8QBhv9ukpqlVQKEMMHQA?pwddqm0 提取码&…

解决电脑声音正常但就是某些游戏没声音问题

电脑声音正常,玩普遍游戏也正常,就有游戏不出声音 详细介绍经过,不喜欢的请直接跳 第三部分。 一、先说下起因现象。 1 大富翁11 没声音。 前段时间无聊怀旧就买了个大富翁11玩玩,近二十年前的老台式机正常无问题。后来想在性能…

Java多线程编程:实现并发处理的高效利器

Java多线程编程:实现并发处理的高效利器 作者:Stevedash 发表于:2023年8月13日 20点45分 来源:Java 多线程编程 | 菜鸟教程 (runoob.com) ​ 在计算机领域,多线程编程是一项重要的技术,可以使程序同时执…

从小白到大神之路之学习运维第79天-------Kubernetes网络组件详解

第四阶段 时 间:2023年8月14日 参加人:全班人员 内 容: Kubernetes网络组件详解 目录 一、Kubernetes网络组件 (一)Flannel网络组件 (二)Calico 网络插件 (1)…

设计模式——建造者(Builder)模式

建造者模式(Builder Pattern),又叫生成器模式,是一种对象构建模式 它可以将复杂对象的建造过程抽象出来,使这个抽象过程的不同实现方法可以构造出不同表现的对象。建造者模式是一步一步创建一个复杂的对象,…

在单元测试中使用Jest模拟VS Code extension API

对VS Code extension进行单元测试时通常会遇到一个问题,代码中所使用的VS Code编辑器的功能都依赖于vscode库,但是我们在单元测试中并没有添加对vscode库的依赖,所以导致运行单元测试时出错。由于vscode库是作为第三方依赖被引入到我们的VS C…

[oneAPI] BERT

[oneAPI] BERT BERT训练过程Masked Language Model(MLM)Next Sentence Prediction(NSP)微调 总结基于oneAPI代码 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI&…

React源码解析18(4)------ completeWork的工作流程【mount】

摘要 经过上一章,我们得到的FilberNode已经具有了child和return属性。一颗Filber树的结构已经展现出来了。 那我们最终是想在页面渲染真实的DOM。所以我们现在要在completeWork里,构建出一颗离屏的DOM树。 之前在说FilberNode的属性时,我们…

zabbix案例--zabbix监控Tomcat

目录 一、 部署tomcat 二、配置zabbix-java-gateway 三、配置zabbix-server 四、配置zabbix-web界面 一、 部署tomcat tar xf apache-tomcat-8.5.16.tar.gz -C /usr/local/ ln -sv /usr/local/apache-tomcat-8.5.16/ /usr/local/tomcat cd /usr/local/tomcat/bin开启JMX…

Vscode 常用操作教程

一、语言换成中文 这是我们可以直接点击左边栏第四个图标搜索插件 chinese ,也可以直接ctrlshiftp快捷键也会出来如图所示图标,出来chinese 插件之后选择安装install,安装完成之后重新ctrlshiftp会出现如图所示页面 找到我的鼠标在的地方对应的中文,此时…

win10下如何安装ffmpeg

安装ffmpeg之前先安装win10 绿色软件管理软件:scoop. Scoop的基本介绍 Scoop是一款适用于Windows平台的命令行软件(包)管理工具,这里是Github介绍页。简单来说,就是可以通过命令行工具(PowerShell、CMD等…

VVIC-商品详情

一、接口参数说明: item_get-根据ID取商品详情,点击更多API调试,请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/vvic/item_get 名称类型必须描述keyString是调用key(点击获取测试k…

【MongoDB】索引

目录 一、概述 二、索引的类型 1、单字段索引 2、复合索引 3、其他索引 三、索引的管理 1、索引的创建 2、索引的查看 3、索引的删除 四、索引的使用 1、执行计划 2、涵盖的查询 一、概述 索引支持在MongoDB中高效地执行查询。如果没有索引,MongoDB必须…

Kubernetes pod调度约束[亲和性 污点] 生命阶段 排障手段

调度约束 Kubernetes 是通过 List-Watch 的机制进行每个组件的协作,保持数据同步的,每个组件之间的设计实现了解耦。 用户是通过 kubectl 根据配置文件,向 APIServer 发送命令,在 Node 节点上面建立 Pod 和 Container。 APIServer…

springcloud3 hystrix实现服务降级,熔断,限流以及案例配置

一 hystrix的作用 1.1 降级,熔断,限流 1.服务降级: A方案出现问题,切换到兜底方案B; 2.服务熔断:触发规则,出现断电限闸,服务降级 3.服务限流:限制请求数量。 二 案例…

FPGA学习——驱动WS2812光源并进行动态显示

文章目录 一、WS2812手册分析1.1 WS2812灯源特性及概述1.2 手册重点内容分析1.2.1 产品概述1.2.2 码型及24bit数据设计 二、系统设计2.1 模块设计2.2 模块分析2.2.1 驱动模块2.2.1 数据控制模块 三、IP核设置及项目源码3.1 MIF文件设计3.2 ROM IP核调用3.3 FIFO IP核调用3.4 项…

源码断点分析Spring的占位符(Placeholder)是怎么工作的

项目中经常需要使用到占位符来满足多环境不同配置信息的需求&#xff0c;比如&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <beans xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xmlns"http://www.springframe…

【爱书不爱输的程序猿】CPOLAR+HFS,低成本搭建NAS

欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享&#xff0c;与更多的人进行学习交流 通过HFS低成本搭建NAS&#xff0c;并内网穿透实现公网访问 - cpolar 极点云 前言1.下载安装cpolar1.1 设置HFS访客1.2 虚拟文件系统 2. 使用cpolar建立一条内网穿透数据隧道2.1 保留…