爬虫-scrapy

一 介绍

    Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速、简单、可扩展的方式从网站中提取所需的数据。但目前Scrapy的用途十分广泛,可用于如数据挖掘、监测和自动化测试等领域,也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。

    Scrapy 是基于twisted框架开发而来,twisted是一个流行的事件驱动的python网络框架。因此Scrapy使用了一种非阻塞(又名异步)的代码来实现并发。整体架构大致如下

The data flow in Scrapy is controlled by the execution engine, and goes like this:

  1. The Engine gets the initial Requests to crawl from the Spider.
  2. The Engine schedules the Requests in the Scheduler and asks for the next Requests to crawl.
  3. The Scheduler returns the next Requests to the Engine.
  4. The Engine sends the Requests to the Downloader, passing through the Downloader Middlewares (see process_request()).
  5. Once the page finishes downloading the Downloader generates a Response (with that page) and sends it to the Engine, passing through the Downloader Middlewares (see process_response()).
  6. The Engine receives the Response from the Downloader and sends it to the Spider for processing, passing through the Spider Middleware (see process_spider_input()).
  7. The Spider processes the Response and returns scraped items and new Requests (to follow) to the Engine, passing through the Spider Middleware (see process_spider_output()).
  8. The Engine sends processed items to Item Pipelines, then send processed Requests to the Scheduler and asks for possible next Requests to crawl.
  9. The process repeats (from step 1) until there are no more requests from the Scheduler.

 

Components:

  1. 引擎(EGINE)

    引擎负责控制系统所有组件之间的数据流,并在某些动作发生时触发事件。有关详细信息,请参见上面的数据流部分。

  2. 调度器(SCHEDULER)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL的优先级队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
  3. 下载器(DOWLOADER)
    用于下载网页内容, 并将网页内容返回给EGINE,下载器是建立在twisted这个高效的异步模型上的
  4. 爬虫(SPIDERS)
    SPIDERS是开发人员自定义的类,用来解析responses,并且提取items,或者发送新的请求
  5. 项目管道(ITEM PIPLINES)
    在items被提取后负责处理它们,主要包括清理、验证、持久化(比如存到数据库)等操作
  6. 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间,主要用来处理从EGINE传到DOWLOADER的请求request,已经从DOWNLOADER传到EGINE的响应response,你可用该中间件做以下几件事
    1. process a request just before it is sent to the Downloader (i.e. right before Scrapy sends the request to the website);
    2. change received response before passing it to a spider;
    3. send a new Request instead of passing received response to a spider;
    4. pass response to a spider without fetching a web page;
    5. silently drop some requests.
  7. 爬虫中间件(Spider Middlewares)
    位于EGINE和SPIDERS之间,主要工作是处理SPIDERS的输入(即responses)和输出(即requests)

官网链接:https://docs.scrapy.org/en/latest/topics/architecture.html

二 安装

#Windows平台1、pip3 install wheel #安装后,便支持通过wheel文件安装软件,wheel文件官网:https://www.lfd.uci.edu/~gohlke/pythonlibs3、pip3 install lxml4、pip3 install pyopenssl5、下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/pywin32/6、下载twisted的wheel文件:http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted7、执行pip3 install 下载目录\Twisted-17.9.0-cp36-cp36m-win_amd64.whl8、pip3 install scrapy#Linux平台1、pip3 install scrapy

三 命令行工具

#1 查看帮助scrapy -hscrapy <command> -h#2 有两种命令:其中Project-only必须切到项目文件夹下才能执行,而Global的命令则不需要
    Global commands:startproject #创建项目genspider    #创建爬虫程序settings     #如果是在项目目录下,则得到的是该项目的配置runspider    #运行一个独立的python文件,不必创建项目shell        #scrapy shell url地址  在交互式调试,如选择器规则正确与否fetch        #独立于程单纯地爬取一个页面,可以拿到请求头view         #下载完毕后直接弹出浏览器,以此可以分辨出哪些数据是ajax请求version      #scrapy version 查看scrapy的版本,scrapy version -v查看scrapy依赖库的版本Project-only commands:crawl        #运行爬虫,必须创建项目才行,确保配置文件中ROBOTSTXT_OBEY = Falsecheck        #检测项目中有无语法错误list         #列出项目中所包含的爬虫名edit         #编辑器,一般不用parse        #scrapy parse url地址 --callback 回调函数  #以此可以验证我们的回调函数是否正确bench        #scrapy bentch压力测试#3 官网链接https://docs.scrapy.org/en/latest/topics/commands.html
#1、执行全局命令:请确保不在某个项目的目录下,排除受该项目配置的影响
scrapy startproject MyProjectcd MyProject
scrapy genspider baidu www.baidu.comscrapy settings --get XXX #如果切换到项目目录下,看到的则是该项目的配置

scrapy runspider baidu.pyscrapy shell https://www.baidu.comresponseresponse.statusresponse.bodyview(response)scrapy view https://www.taobao.com #如果页面显示内容不全,不全的内容则是ajax请求实现的,以此快速定位问题

scrapy fetch --nolog --headers https://www.taobao.comscrapy version #scrapy的版本

scrapy version -v #依赖库的版本#2、执行项目命令:切到项目目录下
scrapy crawl baidu
scrapy check
scrapy list
scrapy parse http://quotes.toscrape.com/ --callback parse
scrapy bench
示范用法

四 项目结构以及爬虫应用简介 

project_name/scrapy.cfgproject_name/__init__.pyitems.pypipelines.pysettings.pyspiders/__init__.py爬虫1.py爬虫2.py爬虫3.py

文件说明:

  • scrapy.cfg  项目的主配置信息,用来部署scrapy时使用,爬虫相关的配置信息在settings.py文件中。
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等。强调:配置文件的选项必须大写否则视为无效,正确写法USER_AGENT='xxxx'
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名

#在项目目录下新建:entrypoint.py
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'xiaohua'])
默认只能在cmd中执行爬虫,如果想在pycharm中执行需要做
import sys,os
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')
关于windows编码

五 Spiders

1、介绍

#1、Spiders是由一系列类(定义了一个网址或一组网址将被爬取)组成,具体包括如何执行爬取任务并且如何从页面中提取结构化的数据。#2、换句话说,Spiders是你为了一个特定的网址或一组网址自定义爬取和解析页面行为的地方

2、Spiders会循环做如下事情

#1、生成初始的Requests来爬取第一个URLS,并且标识一个回调函数
第一个请求定义在start_requests()方法内默认从start_urls列表中获得url地址来生成Request请求,默认的回调函数是parse方法。回调函数在下载完成返回response时自动触发#2、在回调函数中,解析response并且返回值
返回值可以4种:包含解析数据的字典Item对象新的Request对象(新的Requests也需要指定一个回调函数)或者是可迭代对象(包含Items或Request)#3、在回调函数中解析页面内容
通常使用Scrapy自带的Selectors,但很明显你也可以使用Beutifulsoup,lxml或其他你爱用啥用啥。#4、最后,针对返回的Items对象将会被持久化到数据库
通过Item Pipeline组件存到数据库:https://docs.scrapy.org/en/latest/topics/item-pipeline.html#topics-item-pipeline)
或者导出到不同的文件(通过Feed exports:https://docs.scrapy.org/en/latest/topics/feed-exports.html#topics-feed-exports)

3、Spiders总共提供了五种类:

#1、scrapy.spiders.Spider #scrapy.Spider等同于scrapy.spiders.Spider
#2、scrapy.spiders.CrawlSpider
#3、scrapy.spiders.XMLFeedSpider
#4、scrapy.spiders.CSVFeedSpider
#5、scrapy.spiders.SitemapSpider

4、导入使用

# -*- coding: utf-8 -*-
import scrapy
from scrapy.spiders import Spider,CrawlSpider,XMLFeedSpider,CSVFeedSpider,SitemapSpiderclass AmazonSpider(scrapy.Spider): #自定义类,继承Spiders提供的基类name = 'amazon'allowed_domains = ['www.amazon.cn']start_urls = ['http://www.amazon.cn/']def parse(self, response):pass

5、class scrapy.spiders.Spider

这是最简单的spider类,任何其他的spider类都需要继承它(包含你自己定义的)。

该类不提供任何特殊的功能,它仅提供了一个默认的start_requests方法默认从start_urls中读取url地址发送requests请求,并且默认parse作为回调函数

class AmazonSpider(scrapy.Spider):name = 'amazon' allowed_domains = ['www.amazon.cn'] start_urls = ['http://www.amazon.cn/']custom_settings = {'BOT_NAME' : 'Egon_Spider_Amazon','REQUEST_HEADERS' : {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8','Accept-Language': 'en',}}def parse(self, response):pass
#1、name = 'amazon' 
定义爬虫名,scrapy会根据该值定位爬虫程序
所以它必须要有且必须唯一(In Python 2 this must be ASCII only.)#2、allowed_domains = ['www.amazon.cn'] 
定义允许爬取的域名,如果OffsiteMiddleware启动(默认就启动),
那么不属于该列表的域名及其子域名都不允许爬取
如果爬取的网址为:https://www.example.com/1.html,那就添加'example.com'到列表.#3、start_urls = ['http://www.amazon.cn/']
如果没有指定url,就从该列表中读取url来生成第一个请求#4、custom_settings
值为一个字典,定义一些配置信息,在运行爬虫程序时,这些配置会覆盖项目级别的配置
所以custom_settings必须被定义成一个类属性,由于settings会在类实例化前被加载#5、settings
通过self.settings['配置项的名字']可以访问settings.py中的配置,如果自己定义了custom_settings还是以自己的为准#6、logger
日志名默认为spider的名字
self.logger.debug('=============>%s' %self.settings['BOT_NAME'])#5、crawler:了解
该属性必须被定义到类方法from_crawler中#6、from_crawler(crawler, *args, **kwargs):了解
You probably won’t need to override this directly  because the default implementation acts as a proxy to the __init__() method, calling it with the given arguments args and named arguments kwargs.#7、start_requests()
该方法用来发起第一个Requests请求,且必须返回一个可迭代的对象。它在爬虫程序打开时就被Scrapy调用,Scrapy只调用它一次。
默认从start_urls里取出每个url来生成Request(url, dont_filter=True)#针对参数dont_filter,请看自定义去重规则

如果你想要改变起始爬取的Requests,你就需要覆盖这个方法,例如你想要起始发送一个POST请求,如下
class MySpider(scrapy.Spider):name = 'myspider'def start_requests(self):return [scrapy.FormRequest("http://www.example.com/login",formdata={'user': 'john', 'pass': 'secret'},callback=self.logged_in)]def logged_in(self, response):# here you would extract links to follow and return Requests for# each of them, with another callbackpass#8、parse(response)
这是默认的回调函数,所有的回调函数必须返回an iterable of Request and/or dicts or Item objects.#9、log(message[, level, component]):了解
Wrapper that sends a log message through the Spider’s logger, kept for backwards compatibility. For more information see Logging from Spiders.#10、closed(reason)
爬虫程序结束时自动触发
定制scrapy.spider属性与方法详解
去重规则应该多个爬虫共享的,但凡一个爬虫爬取了,其他都不要爬了,实现方式如下#方法一:
1、新增类属性
visited=set() #类属性2、回调函数parse方法内:
def parse(self, response):if response.url in self.visited:return None.......self.visited.add(response.url) #方法一改进:针对url可能过长,所以我们存放url的hash值
def parse(self, response):url=md5(response.request.url)if url in self.visited:return None.......self.visited.add(url) #方法二:Scrapy自带去重功能
配置文件:
DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter' #默认的去重规则帮我们去重,去重规则在内存中
DUPEFILTER_DEBUG = False
JOBDIR = "保存范文记录的日志路径,如:/root/"  # 最终路径为 /root/requests.seen,去重规则放文件中

scrapy自带去重规则默认为RFPDupeFilter,只需要我们指定
Request(...,dont_filter=False) ,如果dont_filter=True则告诉Scrapy这个URL不参与去重。#方法三:
我们也可以仿照RFPDupeFilter自定义去重规则,from scrapy.dupefilter import RFPDupeFilter,看源码,仿照BaseDupeFilter#步骤一:在项目目录下自定义去重文件dup.py
class UrlFilter(object):def __init__(self):self.visited = set() #或者放到数据库
@classmethoddef from_settings(cls, settings):return cls()def request_seen(self, request):if request.url in self.visited:return Trueself.visited.add(request.url)def open(self):  # can return deferredpassdef close(self, reason):  # can return a deferredpassdef log(self, request, spider):  # log that a request has been filteredpass#步骤二:配置文件settings.py:
DUPEFILTER_CLASS = '项目名.dup.UrlFilter'# 源码分析:
from scrapy.core.scheduler import Scheduler
见Scheduler下的enqueue_request方法:self.df.request_seen(request)
去重规则:去除重复的url
#例一:
import scrapyclass MySpider(scrapy.Spider):name = 'example.com'allowed_domains = ['example.com']start_urls = ['http://www.example.com/1.html','http://www.example.com/2.html','http://www.example.com/3.html',]def parse(self, response):self.logger.info('A response from %s just arrived!', response.url)#例二:一个回调函数返回多个Requests和Items
import scrapyclass MySpider(scrapy.Spider):name = 'example.com'allowed_domains = ['example.com']start_urls = ['http://www.example.com/1.html','http://www.example.com/2.html','http://www.example.com/3.html',]def parse(self, response):for h3 in response.xpath('//h3').extract():yield {"title": h3}for url in response.xpath('//a/@href').extract():yield scrapy.Request(url, callback=self.parse)#例三:在start_requests()内直接指定起始爬取的urls,start_urls就没有用了,import scrapy
from myproject.items import MyItemclass MySpider(scrapy.Spider):name = 'example.com'allowed_domains = ['example.com']def start_requests(self):yield scrapy.Request('http://www.example.com/1.html', self.parse)yield scrapy.Request('http://www.example.com/2.html', self.parse)yield scrapy.Request('http://www.example.com/3.html', self.parse)def parse(self, response):for h3 in response.xpath('//h3').extract():yield MyItem(title=h3)for url in response.xpath('//a/@href').extract():yield scrapy.Request(url, callback=self.parse)
例子
我们可能需要在命令行为爬虫程序传递参数,比如传递初始的url,像这样
#命令行执行
scrapy crawl myspider -a category=electronics#在__init__方法中可以接收外部传进来的参数
import scrapyclass MySpider(scrapy.Spider):name = 'myspider'def __init__(self, category=None, *args, **kwargs):super(MySpider, self).__init__(*args, **kwargs)self.start_urls = ['http://www.example.com/categories/%s' % category]#...#注意接收的参数全都是字符串,如果想要结构化的数据,你需要用类似json.loads的方法
参数传递

6、其他通用Spiders:https://docs.scrapy.org/en/latest/topics/spiders.html#generic-spiders

六 Selectors

#1 //与/
#2 text
#3、extract与extract_first:从selector对象中解出内容
#4、属性:xpath的属性加前缀@
#4、嵌套查找
#5、设置默认值
#4、按照属性查找
#5、按照属性模糊查找
#6、正则表达式
#7、xpath相对路径
#8、带变量的xpath
response.selector.css()
response.selector.xpath()
可简写为
response.css()
response.xpath()#1 //与/
response.xpath('//body/a/')#
response.css('div a::text')>>> response.xpath('//body/a') #开头的//代表从整篇文档中寻找,body之后的/代表body的儿子
[]
>>> response.xpath('//body//a') #开头的//代表从整篇文档中寻找,body之后的//代表body的子子孙孙
[<Selector xpath='//body//a' data='<a href="image1.html">Name: My image 1 <'>, <Selector xpath='//body//a' data='<a href="image2.html">Name: My image 2 <'>, <Selector xpath='//body//a' data='<a href="
image3.html">Name: My image 3 <'>, <Selector xpath='//body//a' data='<a href="image4.html">Name: My image 4 <'>, <Selector xpath='//body//a' data='<a href="image5.html">Name: My image 5 <'>]#2 text
>>> response.xpath('//body//a/text()')
>>> response.css('body a::text')#3、extract与extract_first:从selector对象中解出内容
>>> response.xpath('//div/a/text()').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 ']
>>> response.css('div a::text').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 ']>>> response.xpath('//div/a/text()').extract_first()
'Name: My image 1 '
>>> response.css('div a::text').extract_first()
'Name: My image 1 '#4、属性:xpath的属性加前缀@
>>> response.xpath('//div/a/@href').extract_first()
'image1.html'
>>> response.css('div a::attr(href)').extract_first()
'image1.html'#4、嵌套查找
>>> response.xpath('//div').css('a').xpath('@href').extract_first()
'image1.html'#5、设置默认值
>>> response.xpath('//div[@id="xxx"]').extract_first(default="not found")
'not found'#4、按照属性查找
response.xpath('//div[@id="images"]/a[@href="image3.html"]/text()').extract()
response.css('#images a[@href="image3.html"]/text()').extract()#5、按照属性模糊查找
response.xpath('//a[contains(@href,"image")]/@href').extract()
response.css('a[href*="image"]::attr(href)').extract()response.xpath('//a[contains(@href,"image")]/img/@src').extract()
response.css('a[href*="imag"] img::attr(src)').extract()response.xpath('//*[@href="image1.html"]')
response.css('*[href="image1.html"]')#6、正则表达式
response.xpath('//a/text()').re(r'Name: (.*)')
response.xpath('//a/text()').re_first(r'Name: (.*)')#7、xpath相对路径
>>> res=response.xpath('//a[contains(@href,"3")]')[0]
>>> res.xpath('img')
[<Selector xpath='img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('./img')
[<Selector xpath='./img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('.//img')
[<Selector xpath='.//img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('//img') #这就是从头开始扫描
[<Selector xpath='//img' data='<img src="image1_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image2_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image3_thumb.jpg">'>, <Selector xpa
th='//img' data='<img src="image4_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image5_thumb.jpg">'>]#8、带变量的xpath
>>> response.xpath('//div[@id=$xxx]/a/text()',xxx='images').extract_first()
'Name: My image 1 '
>>> response.xpath('//div[count(a)=$yyy]/@id',yyy=5).extract_first() #求有5个a标签的div的id
'images'
View Code

https://docs.scrapy.org/en/latest/topics/selectors.html

七 Items

https://docs.scrapy.org/en/latest/topics/items.html

八 Item Pipeline

#一:可以写多个Pipeline类
#1、如果优先级高的Pipeline的process_item返回一个值或者None,会自动传给下一个pipline的process_item,
#2、如果只想让第一个Pipeline执行,那得让第一个pipline的process_item抛出异常raise DropItem()#3、可以用spider.name == '爬虫名' 来控制哪些爬虫用哪些pipeline

二:示范
from scrapy.exceptions import DropItemclass CustomPipeline(object):def __init__(self,v):self.value = v@classmethoddef from_crawler(cls, crawler):"""Scrapy会先通过getattr判断我们是否自定义了from_crawler,有则调它来完成实例化"""val = crawler.settings.getint('MMMM')return cls(val)def open_spider(self,spider):"""爬虫刚启动时执行一次"""print('000000')def close_spider(self,spider):"""爬虫关闭时执行一次"""print('111111')def process_item(self, item, spider):# 操作并进行持久化# return表示会被后续的pipeline继续处理return item# 表示将item丢弃,不会被后续pipeline处理# raise DropItem()
自定义pipeline
#1、settings.py
HOST="127.0.0.1"
PORT=27017
USER="root"
PWD="123"
DB="amazon"
TABLE="goods"ITEM_PIPELINES = {'Amazon.pipelines.CustomPipeline': 200,
}#2、pipelines.py
class CustomPipeline(object):def __init__(self,host,port,user,pwd,db,table):self.host=hostself.port=portself.user=userself.pwd=pwdself.db=dbself.table=table@classmethoddef from_crawler(cls, crawler):"""Scrapy会先通过getattr判断我们是否自定义了from_crawler,有则调它来完成实例化"""HOST = crawler.settings.get('HOST')PORT = crawler.settings.get('PORT')USER = crawler.settings.get('USER')PWD = crawler.settings.get('PWD')DB = crawler.settings.get('DB')TABLE = crawler.settings.get('TABLE')return cls(HOST,PORT,USER,PWD,DB,TABLE)def open_spider(self,spider):"""爬虫刚启动时执行一次"""self.client = MongoClient('mongodb://%s:%s@%s:%s' %(self.user,self.pwd,self.host,self.port))def close_spider(self,spider):"""爬虫关闭时执行一次"""self.client.close()def process_item(self, item, spider):# 操作并进行持久化
self.client[self.db][self.table].save(dict(item))
示范

https://docs.scrapy.org/en/latest/topics/item-pipeline.html

九 Dowloader Middeware

class DownMiddleware1(object):def process_request(self, request, spider):"""请求需要被下载时,经过所有下载器中间件的process_request调用:param request: :param spider: :return:  None,继续后续中间件去下载;Response对象,停止process_request的执行,开始执行process_responseRequest对象,停止中间件的执行,将Request重新调度器raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception"""passdef process_response(self, request, response, spider):"""spider处理完成,返回时调用:param response::param result::param spider::return: Response 对象:转交给其他中间件process_responseRequest 对象:停止中间件,request会被重新调度下载raise IgnoreRequest 异常:调用Request.errback"""print('response1')return responsedef process_exception(self, request, exception, spider):"""当下载处理器(download handler)或 process_request() (下载中间件)抛出异常:param response::param exception::param spider::return: None:继续交给后续中间件处理异常;Response对象:停止后续process_exception方法Request对象:停止中间件,request将会被重新调用下载"""return None
下载器中间件

https://docs.scrapy.org/en/latest/topics/downloader-middleware.html

class DownMiddleware1(object):@staticmethoddef get_proxy():return requests.get("http://127.0.0.1:5010/get/").text@staticmethoddef delete_proxy(proxy):requests.get("http://127.0.0.1:5010/delete/?proxy={}".format(proxy))def process_request(self, request, spider):"""请求需要被下载时,经过所有下载器中间件的process_request调用:param request::param spider::return:None,继续后续中间件去下载;Response对象,停止process_request的执行,开始执行process_responseRequest对象,停止中间件的执行,将Request重新调度器raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception"""if not hasattr(DownMiddleware1,'proxy_addr'):DownMiddleware1.proxy_addr = self.get_proxy()request.meta['download_timeout'] = 5request.meta["proxy"] = "http://" + self.proxy_addrprint('元数据',request.meta)if request.meta.get('depth') == 10 or request.meta.get('retry_times') == 2:request.meta['depth'] = 0request.meta['retry_times']=0self.delete_proxy(self.proxy_addr)DownMiddleware1.proxy_addr=self.get_proxy()request.meta["proxy"] = "http://" + self.proxy_addrprint('============>',request.meta)return requestreturn None
View Code

十 Spider Middleware

class SpiderMiddleware(object):def process_spider_input(self,response, spider):"""下载完成,执行,然后交给parse处理:param response: :param spider: :return: """passdef process_spider_output(self,response, result, spider):"""spider处理完成,返回时调用:param response::param result::param spider::return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)"""return resultdef process_spider_exception(self,response, exception, spider):"""异常调用:param response::param exception::param spider::return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline"""return Nonedef process_start_requests(self,start_requests, spider):"""爬虫启动时调用:param start_requests::param spider::return: 包含 Request 对象的可迭代对象"""return start_requests
爬虫中间件

https://docs.scrapy.org/en/latest/topics/spider-middleware.html

十一 settings.py

# -*- coding: utf-8 -*-# Scrapy settings for step8_king project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html# 1. 爬虫名称
BOT_NAME = 'step8_king'# 2. 爬虫应用路径
SPIDER_MODULES = ['step8_king.spiders']
NEWSPIDER_MODULE = 'step8_king.spiders'# Crawl responsibly by identifying yourself (and your website) on the user-agent
# 3. 客户端 user-agent请求头
# USER_AGENT = 'step8_king (+http://www.yourdomain.com)'# Obey robots.txt rules
# 4. 禁止爬虫配置
# ROBOTSTXT_OBEY = False# Configure maximum concurrent requests performed by Scrapy (default: 16)
# 5. 并发请求数
# CONCURRENT_REQUESTS = 4# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# 6. 延迟下载秒数
# DOWNLOAD_DELAY = 2# The download delay setting will honor only one of:
# 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名
# CONCURRENT_REQUESTS_PER_DOMAIN = 2
# 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
# CONCURRENT_REQUESTS_PER_IP = 3# Disable cookies (enabled by default)
# 8. 是否支持cookie,cookiejar进行操作cookie
# COOKIES_ENABLED = True
# COOKIES_DEBUG = True# Disable Telnet Console (enabled by default)
# 9. Telnet用于查看当前爬虫的信息,操作爬虫等...
#    使用telnet ip port ,然后通过命令操作
# TELNETCONSOLE_ENABLED = True
# TELNETCONSOLE_HOST = '127.0.0.1'
# TELNETCONSOLE_PORT = [6023,]# 10. 默认请求头
# Override the default request headers:
# DEFAULT_REQUEST_HEADERS = {
#     'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#     'Accept-Language': 'en',
# }# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
# 11. 定义pipeline处理请求
# ITEM_PIPELINES = {
#    'step8_king.pipelines.JsonPipeline': 700,
#    'step8_king.pipelines.FilePipeline': 500,
# }# 12. 自定义扩展,基于信号进行调用
# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
# EXTENSIONS = {
#     # 'step8_king.extensions.MyExtension': 500,
# }# 13. 爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度
# DEPTH_LIMIT = 3# 14. 爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo# 后进先出,深度优先
# DEPTH_PRIORITY = 0
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue'
# 先进先出,广度优先# DEPTH_PRIORITY = 1
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'# 15. 调度器队列
# SCHEDULER = 'scrapy.core.scheduler.Scheduler'
# from scrapy.core.scheduler import Scheduler# 16. 访问URL去重
# DUPEFILTER_CLASS = 'step8_king.duplication.RepeatUrl'# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html"""
17. 自动限速算法from scrapy.contrib.throttle import AutoThrottle自动限速设置1. 获取最小延迟 DOWNLOAD_DELAY2. 获取最大延迟 AUTOTHROTTLE_MAX_DELAY3. 设置初始下载延迟 AUTOTHROTTLE_START_DELAY4. 当请求下载完成后,获取其"连接"时间 latency,即:请求连接到接受到响应头之间的时间5. 用于计算的... AUTOTHROTTLE_TARGET_CONCURRENCYtarget_delay = latency / self.target_concurrencynew_delay = (slot.delay + target_delay) / 2.0 # 表示上一次的延迟时间new_delay = max(target_delay, new_delay)new_delay = min(max(self.mindelay, new_delay), self.maxdelay)slot.delay = new_delay
"""# 开始自动限速
# AUTOTHROTTLE_ENABLED = True
# The initial download delay
# 初始下载延迟
# AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
# 最大下载延迟
# AUTOTHROTTLE_MAX_DELAY = 10
# The average number of requests Scrapy should be sending in parallel to each remote server
# 平均每秒并发数
# AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0# Enable showing throttling stats for every response received:
# 是否显示
# AUTOTHROTTLE_DEBUG = True# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings"""
18. 启用缓存目的用于将已经发送的请求或相应缓存下来,以便以后使用from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddlewarefrom scrapy.extensions.httpcache import DummyPolicyfrom scrapy.extensions.httpcache import FilesystemCacheStorage
"""
# 是否启用缓存策略
# HTTPCACHE_ENABLED = True# 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy"
# 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy"# 缓存超时时间
# HTTPCACHE_EXPIRATION_SECS = 0# 缓存保存路径
# HTTPCACHE_DIR = 'httpcache'# 缓存忽略的Http状态码
# HTTPCACHE_IGNORE_HTTP_CODES = []# 缓存存储的插件
# HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'"""
19. 代理,需要在环境变量中设置from scrapy.contrib.downloadermiddleware.httpproxy import HttpProxyMiddleware方式一:使用默认os.environ{http_proxy:http://root:woshiniba@192.168.11.11:9999/https_proxy:http://192.168.11.11:9999/}方式二:使用自定义下载中间件def to_bytes(text, encoding=None, errors='strict'):if isinstance(text, bytes):return textif not isinstance(text, six.string_types):raise TypeError('to_bytes must receive a unicode, str or bytes ''object, got %s' % type(text).__name__)if encoding is None:encoding = 'utf-8'return text.encode(encoding, errors)class ProxyMiddleware(object):def process_request(self, request, spider):PROXIES = [{'ip_port': '111.11.228.75:80', 'user_pass': ''},{'ip_port': '120.198.243.22:80', 'user_pass': ''},{'ip_port': '111.8.60.9:8123', 'user_pass': ''},{'ip_port': '101.71.27.120:80', 'user_pass': ''},{'ip_port': '122.96.59.104:80', 'user_pass': ''},{'ip_port': '122.224.249.122:8088', 'user_pass': ''},]proxy = random.choice(PROXIES)if proxy['user_pass'] is not None:request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])encoded_user_pass = base64.encodestring(to_bytes(proxy['user_pass']))request.headers['Proxy-Authorization'] = to_bytes('Basic ' + encoded_user_pass)print "**************ProxyMiddleware have pass************" + proxy['ip_port']else:print "**************ProxyMiddleware no pass************" + proxy['ip_port']request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])DOWNLOADER_MIDDLEWARES = {'step8_king.middlewares.ProxyMiddleware': 500,}""""""
20. Https访问Https访问时有两种情况:1. 要爬取网站使用的可信任证书(默认支持)DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy.core.downloader.contextfactory.ScrapyClientContextFactory"2. 要爬取网站使用的自定义证书DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"DOWNLOADER_CLIENTCONTEXTFACTORY = "step8_king.https.MySSLFactory"# https.pyfrom scrapy.core.downloader.contextfactory import ScrapyClientContextFactoryfrom twisted.internet.ssl import (optionsForClientTLS, CertificateOptions, PrivateCertificate)class MySSLFactory(ScrapyClientContextFactory):def getCertificateOptions(self):from OpenSSL import cryptov1 = crypto.load_privatekey(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.key.unsecure', mode='r').read())v2 = crypto.load_certificate(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.pem', mode='r').read())return CertificateOptions(privateKey=v1,  # pKey对象certificate=v2,  # X509对象verify=False,method=getattr(self, 'method', getattr(self, '_ssl_method', None)))其他:相关类scrapy.core.downloader.handlers.http.HttpDownloadHandlerscrapy.core.downloader.webclient.ScrapyHTTPClientFactoryscrapy.core.downloader.contextfactory.ScrapyClientContextFactory相关配置DOWNLOADER_HTTPCLIENTFACTORYDOWNLOADER_CLIENTCONTEXTFACTORY""""""
21. 爬虫中间件class SpiderMiddleware(object):def process_spider_input(self,response, spider):'''下载完成,执行,然后交给parse处理:param response: :param spider: :return: '''passdef process_spider_output(self,response, result, spider):'''spider处理完成,返回时调用:param response::param result::param spider::return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)'''return resultdef process_spider_exception(self,response, exception, spider):'''异常调用:param response::param exception::param spider::return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline'''return Nonedef process_start_requests(self,start_requests, spider):'''爬虫启动时调用:param start_requests::param spider::return: 包含 Request 对象的可迭代对象'''return start_requests内置爬虫中间件:'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50,'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500,'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700,'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800,'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900,"""
# from scrapy.contrib.spidermiddleware.referer import RefererMiddleware
# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
SPIDER_MIDDLEWARES = {# 'step8_king.middlewares.SpiderMiddleware': 543,
}"""
22. 下载中间件class DownMiddleware1(object):def process_request(self, request, spider):'''请求需要被下载时,经过所有下载器中间件的process_request调用:param request::param spider::return:None,继续后续中间件去下载;Response对象,停止process_request的执行,开始执行process_responseRequest对象,停止中间件的执行,将Request重新调度器raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception'''passdef process_response(self, request, response, spider):'''spider处理完成,返回时调用:param response::param result::param spider::return:Response 对象:转交给其他中间件process_responseRequest 对象:停止中间件,request会被重新调度下载raise IgnoreRequest 异常:调用Request.errback'''print('response1')return responsedef process_exception(self, request, exception, spider):'''当下载处理器(download handler)或 process_request() (下载中间件)抛出异常:param response::param exception::param spider::return:None:继续交给后续中间件处理异常;Response对象:停止后续process_exception方法Request对象:停止中间件,request将会被重新调用下载'''return None默认下载中间件{'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100,'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300,'scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware': 350,'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400,'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500,'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550,'scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware': 580,'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 590,'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600,'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700,'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750,'scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware': 830,'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850,'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900,}"""
# from scrapy.contrib.downloadermiddleware.httpauth import HttpAuthMiddleware
# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# DOWNLOADER_MIDDLEWARES = {
#    'step8_king.middlewares.DownMiddleware1': 100,
#    'step8_king.middlewares.DownMiddleware2': 500,
# }
settings.py

十二 爬取亚马逊商品信息

1、
scrapy startproject Amazon
cd Amazon
scrapy genspider spider_goods www.amazon.cn2、settings.py
ROBOTSTXT_OBEY = False
#请求头
DEFAULT_REQUEST_HEADERS = {'Referer':'https://www.amazon.cn/','User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.75 Safari/537.36'
}
#打开注释
HTTPCACHE_ENABLED = True
HTTPCACHE_EXPIRATION_SECS = 0
HTTPCACHE_DIR = 'httpcache'
HTTPCACHE_IGNORE_HTTP_CODES = []
HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'3、items.py
class GoodsItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()#商品名字goods_name = scrapy.Field()#价钱goods_price = scrapy.Field()#配送方式delivery_method=scrapy.Field()4、spider_goods.py
# -*- coding: utf-8 -*-
import scrapyfrom Amazon.items import  GoodsItem
from scrapy.http import Request
from urllib.parse import urlencodeclass SpiderGoodsSpider(scrapy.Spider):name = 'spider_goods'allowed_domains = ['www.amazon.cn']# start_urls = ['http://www.amazon.cn/']def __int__(self,keyword=None,*args,**kwargs):super(SpiderGoodsSpider).__init__(*args,**kwargs)self.keyword=keyworddef start_requests(self):url='https://www.amazon.cn/s/ref=nb_sb_noss_1?'paramas={'__mk_zh_CN': '亚马逊网站','url': 'search - alias = aps','field-keywords': self.keyword}url=url+urlencode(paramas,encoding='utf-8')yield Request(url,callback=self.parse_index)def parse_index(self, response):print('解析索引页:%s' %response.url)urls=response.xpath('//*[contains(@id,"result_")]/div/div[3]/div[1]/a/@href').extract()for url in urls:yield Request(url,callback=self.parse_detail)next_url=response.urljoin(response.xpath('//*[@id="pagnNextLink"]/@href').extract_first())print('下一页的url',next_url)yield Request(next_url,callback=self.parse_index)def parse_detail(self,response):print('解析详情页:%s' %(response.url))item=GoodsItem()# 商品名字item['goods_name'] = response.xpath('//*[@id="productTitle"]/text()').extract_first().strip()# 价钱item['goods_price'] = response.xpath('//*[@id="priceblock_ourprice"]/text()').extract_first().strip()# 配送方式item['delivery_method'] = ''.join(response.xpath('//*[@id="ddmMerchantMessage"]//text()').extract())return item5、自定义pipelines
#sql.py
import pymysql
import settingsMYSQL_HOST=settings.MYSQL_HOST
MYSQL_PORT=settings.MYSQL_PORT
MYSQL_USER=settings.MYSQL_USER
MYSQL_PWD=settings.MYSQL_PWD
MYSQL_DB=settings.MYSQL_DBconn=pymysql.connect(host=MYSQL_HOST,port=int(MYSQL_PORT),user=MYSQL_USER,password=MYSQL_PWD,db=MYSQL_DB,charset='utf8'
)
cursor=conn.cursor()class Mysql(object):@staticmethoddef insert_tables_goods(goods_name,goods_price,deliver_mode):sql='insert into goods(goods_name,goods_price,delivery_method) values(%s,%s,%s)'cursor.execute(sql,args=(goods_name,goods_price,deliver_mode))conn.commit()@staticmethoddef is_repeat(goods_name):sql='select count(1) from goods where goods_name=%s'cursor.execute(sql,args=(goods_name,))if cursor.fetchone()[0] >= 1:return Trueif __name__ == '__main__':cursor.execute('select * from goods;')print(cursor.fetchall())#pipelines.py
from Amazon.mysqlpipelines.sql import Mysqlclass AmazonPipeline(object):def process_item(self, item, spider):goods_name=item['goods_name']goods_price=item['goods_price']delivery_mode=item['delivery_method']if not Mysql.is_repeat(goods_name):Mysql.insert_table_goods(goods_name,goods_price,delivery_mode)6、创建数据库表
create database amazon charset utf8;
create table goods(id int primary key auto_increment,goods_name char(30),goods_price char(20),delivery_method varchar(50)
);7、settings.py
MYSQL_HOST='localhost'
MYSQL_PORT='3306'
MYSQL_USER='root'
MYSQL_PWD='123'
MYSQL_DB='amazon'#数字代表优先级程度(1-1000随意设置,数值越低,组件的优先级越高)
ITEM_PIPELINES = {'Amazon.mysqlpipelines.pipelines.mazonPipeline': 1,
}#8、在项目目录下新建:entrypoint.py
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'spider_goods','-a','keyword=iphone8'])
View Code

 https://pan.baidu.com/s/1boCEBT1

转载于:https://www.cnblogs.com/buyisan/p/8289624.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/368190.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java垃圾回收(4)

G1&#xff1a;垃圾优先 G1收集器是热点JVM中要实现的最新收集器。 自Java 7 Update 4以来&#xff0c;它一直是受支持的收集器。OracleGC团队也公开表示&#xff0c;他们对低暂停GC的希望是完全实现的G1。 这篇文章来自我之前的垃圾收集博客文章&#xff1a; 热点GC概述 。 …

Html5 冒泡排序演示

本文通过一个简单的小例子&#xff0c;简述冒泡算法在B/S中的简单使用&#xff0c;仅供学习分享使用&#xff0c;如有不足之处&#xff0c;还请指正。 概述 冒泡排序&#xff08;Bubble Sort&#xff09;&#xff0c;是一种计算机科学领域的较简单的排序算法。 它重复地走访…

一种编写测试的好方法

测试。 最近我一直在考虑进行测试。 作为我对各种项目所做的代码审查的一部分&#xff0c;我已经看到了数千行未经测试的代码。 这不仅是测试覆盖率统计数据指出这一点的情况&#xff0c;还更多是该项目中根本没有任何测试的情况 。 我一直听到这种悲惨状况的两个原因&#xff…

rem、px、em之间的区别以及网页响应式设计写法

个人收藏用&#xff0c;转载自&#xff1a;http://www.w3cplus.com/css3/define-font-size-with-css3-rem 在Web中使用什么单位来定义页面的字体大小&#xff0c;至今天为止都还在激烈的争论着&#xff0c;有人说PX做为单位好&#xff0c;有人说EM优点多&#xff0c;还有人在说…

游戏服务器架构图

1&#xff1a;ARPG类型游戏 2:MMORPG 3:MOBA 4:卡牌类 5&#xff1a;棋盘类 转载于:https://www.cnblogs.com/like-minded/p/8297718.html

GlassFish 4带来了Java EE 7

真是惊喜 除了推出新的iOS 7外&#xff0c;苹果在wwdc上什么也没提供。 碰巧的是&#xff0c;在他们的主题演讲后不久&#xff0c;又有7个人正式露面。 GlassFish 4.0已于昨天晚上发布&#xff08;显然是不需要的&#xff09;。 新的Java EE 7参考实现自动成为当今第一个可用的…

bootstrap的栅格布局与两列布局结合使用

在工作中我们常常需要实现响应式布局&#xff0c;这个可以使用bootstrap的栅格系统来实现&#xff0c;我们在列里也需要实现一部分的响应式。比如下面的效果图&#xff0c;需要实现左边图标固定&#xff0c;右边的自适应 &#xff1a; 左边固定宽度&#xff0c;右边自适应&…

JVM性能魔术技巧

HotSpot是我们众所周知和喜爱的JVM&#xff0c;是Java和Scala汁流淌的大脑。 多年来&#xff0c;许多工程师对其进行了改进和调整&#xff0c;并且在每次迭代中&#xff0c;其代码执行的速度和效率都接近本机编译代码。 JIT&#xff08;“即时”&#xff09;编译器是其核心。…

mysql 10个日期,MySQL自学篇(10)——日期函数

MySQL自学篇(十)——日期函数日期和时间函数(1)获取当前日期的函数和时间的函数CURDATE()和CURRENT_DATE()函数&#xff0c;获取当前日期select current_date(),curdate(),curdate()0;curdate()0 表示将当前时间转化为数值型CURTIME()和CURRENT_TIME()获取当前时间select cur…

python-flask-请求源码流程

启动先执行manage.py 中的 app.run() class Flask(_PackageBoundObject):   def run(self, hostNone, portNone, debugNone, **options):from werkzeug.serving import run_simpletry:#run_simple 是werkzeug 提供的方法&#xff0c;会执行第三个参数 self()run_simple(ho…

正则表达式强化,爬虫练习

re模块下的常用方法 import re ret re.findall(\d(\.\d)?, 1.232.34)   print(ret) 结果&#xff1a; [.23,.34] # findall的正则表达式里面有分组(),()里面的内容优先显示 ret re.findall(\d(?:\.\d)?, 1.232.34)print(ret)    结果&#xff1a;…

Linux LVM管理

LVM(Logical Volume Manager)逻辑卷管理是在Linux2.4内核以上实现的磁盘管理技术。它是Linux环境下对磁盘分区进行管理的一种机制。 本文内容&#xff1a; 创建和管理LVM扩容LVM分区一、创建和管理LVM 要创建一个LVM系统&#xff0c;一般需要经过以下步骤&#xff1a; 1、 创建…

USB OTG插入检测识别

一 USB引脚一般四根线&#xff0c;定义如下&#xff1a; 为支持OTG功能&#xff0c;mini/micro usb接口扩展了一个ID引脚&#xff08;第4脚&#xff09; A设备端ID脚接地&#xff0c;则初始状态为Host&#xff0c;例如PC和支持OTG设备做主设备时 B设备端ID脚悬空&#xff0c;默…

CSS3与页面布局学习笔记(三)——BFC、定位、浮动、7种垂直居中方法

一、BFC与IFC 1.1、BFC与IFC概要 BFC&#xff08;Block Formatting Context&#xff09;即“块级格式化上下文”&#xff0c; IFC&#xff08;Inline Formatting Context&#xff09;即行内格式化上下文。常规流&#xff08;也称标准流、普通流&#xff09;是一个文档在被显示…

Java垃圾回收(2)

并行清理 今天&#xff0c;我们介绍了并行GC的工作原理。 具体来说&#xff0c;这是在Eden上运行Parallel Scavenge收集器&#xff0c;在Tenured一代中运行Parallel Mark and Sweep收集器的组合。 您可以通过传递-XX&#xff1a; UseParallelOldGC来获得此选项&#xff0c;尽管…

Navicat Premium创建MySQL存储过程

1、使用Navicat Premium打开创建函数向导&#xff0c;操作&#xff1a;连接名——数据库——函数——新建函数 2、选择过程——输入存储过程参数——完成&#xff08;这一步可以不填写参数&#xff0c;编写存储过程代码的时候设置参数&#xff09; 3、按照要求完成存储过程代码…

CSS3与页面布局学习笔记(二)——盒子模型(Box Model)、边距折叠、内联与块标签、CSSReset

一、盒子模型&#xff08;Box Model&#xff09; 盒子模型也有人称为框模型&#xff0c;HTML中的多数元素都会在浏览器中生成一个矩形的区域&#xff0c;每个区域包含四个组成部分&#xff0c;从外向内依次是&#xff1a;外边距&#xff08;Margin&#xff09;、边框&#xff…

mysql中将某个字段做计算,mysql创建计算字段使用子查询教程

作为计算字段使用子查询使用子查询的另一方法是创建计算字段。假如需要显示 customers表中每个客户的订单总数。订单与相应的客户ID存储在 orders 表中。为了执行这个操作&#xff0c;遵循下面的步骤。(1) 从 customers 表中检索客户列表。(2) 对于检索出的每个客户&#xff0c…

Android GreenDao使用教程

一、Greendao简介 Greendao是一款用于数据库创建与管理的框架&#xff0c;由于原生SQLite语言比较复杂繁琐&#xff0c;使得不少程序员不得不去学习SQLite原生语言&#xff0c;但是学习成本高&#xff0c;效率低下&#xff0c;所以不少公司致力于开发一款简单的数据库管理框架&…

Java垃圾回收(1)

这是有关垃圾收集&#xff08;GC&#xff09;的系列文章中的第一篇。 我希望能够涵盖整个系列过程中的理论知识以及热点虚拟机中的所有主要收集器。 这篇文章仅说明什么是垃圾回收&#xff0c;以及不同回收器共有的元素。 我为什么要在乎&#xff1f; 您的Java虚拟机可以为您管…