传送门
codeforces传送门codeforces传送门codeforces传送门
生成函数好题。
卡场差评至今未过
题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: Expected 'EOF', got '\inC' at position 4: v_i\̲i̲n̲C̲=\{a_1,a_2,...a…,定义一棵树的权值为所有点的权值之和,问有多少棵树满足其权值等于i(i=1,2,...,m)i(i=1,2,...,m)i(i=1,2,...,m)
对每个点的值构造生成函数g(x)=∑nanxn(an=[n∈C])g(x)=\sum_na_nx^n(a_n=[n\in C])g(x)=∑nanxn(an=[n∈C]),令f(x)f(x)f(x)表示答案的生成函数。
那么f(x)=g(x)f2(x)+1f(x)=g(x)f^2(x)+1f(x)=g(x)f2(x)+1 注意空树的情况,这个递推式相当于考虑自己的权值以及左右子树的权值
然后解方程:f(x)=21−1−4g(x)f(x)=\frac 2{1-\sqrt{1-4g(x)}}f(x)=1−1−4g(x)2
然后上多项式开方和多项式求逆即可。
悲伤的故事:封装了一波多项式运算导致常数太大,于是只能在codeforcescodeforcescodeforces上水过,bzojbzojbzoj至今未过
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){int ans=0;char ch=getchar();while(!isdigit(ch))ch=getchar();while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();return ans;
}
typedef long long ll;
const int mod=998244353;
int n,lim,tim,m;
vector<int>A,B,pos,Inv;
#define add(a,b) ((a)+(b)>=mod?(a)+(b)-mod:(a)+(b))
#define dec(a,b) ((a)>=(b)?(a)-(b):(a)-(b)+mod)
#define mul(a,b) ((ll)(a)*(b)%mod)
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=mul(a,a))if(p&1)ret=mul(ret,a);return ret;}
inline void ntt(vector<int>&a,const int&type){for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);for(ri mid=1,wn,mult=(mod-1)/2,typ=type==1?3:(mod+1)/3;mid<lim;mid<<=1,mult>>=1){wn=ksm(typ,mult);for(ri j=0,len=mid<<1;j<lim;j+=len)for(ri w=1,a0,a1,k=0;k<mid;++k,w=mul(w,wn)){a0=a[j+k],a1=mul(w,a[j+k+mid]);a[j+k]=add(a0,a1),a[j+k+mid]=dec(a0,a1);}}if(type==-1)for(ri i=0,inv=ksm(lim,mod-2);i<lim;++i)a[i]=mul(a[i],inv);
}
inline void init(const int&up){lim=1,tim=0;while(lim<=up)lim<<=1,++tim;pos.resize(lim),pos[0]=0;for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
struct poly{vector<int>a;inline int deg()const{return a.size()-1;}poly(int k,int x=0){a.resize(k+1),a[k]=x;}inline int&operator[](const int&k){return a[k];}inline const int&operator[](const int&k)const{return a[k];}inline poly extend(const int&k){poly ret=*this;return ret.a.resize(k),ret;}friend inline poly operator+(const poly&a,const poly&b){poly ret(max(a.deg(),b.deg()));for(ri i=0;i<=a.deg();++i)ret[i]=add(ret[i],a[i]);for(ri i=0;i<=b.deg();++i)ret[i]=add(ret[i],b[i]);return ret;}friend inline poly operator-(const poly&a,const poly&b){poly ret(max(a.deg(),b.deg()));for(ri i=0;i<=a.deg();++i)ret[i]=add(ret[i],a[i]);for(ri i=0;i<=b.deg();++i)ret[i]=dec(ret[i],b[i]);return ret;}friend inline poly operator*(const int&a,const poly&b){poly ret(b.deg());for(ri i=0;i<=b.deg();++i)ret[i]=mul(a,b[i]);return ret;}friend inline poly operator*(const poly&a,const poly&b){int n=a.deg(),m=b.deg();init(n+m),A.resize(lim),B.resize(lim);poly ret(lim-1);for(ri i=0;i<=n;++i)A[i]=a[i];for(ri i=0;i<=m;++i)B[i]=b[i];for(ri i=n+1;i<lim;++i)A[i]=0;for(ri i=m+1;i<lim;++i)B[i]=0;ntt(A,1),ntt(B,1);for(ri i=0;i<lim;++i)A[i]=mul(A[i],B[i]);return ntt(A,-1),ret.a=A,ret;}inline poly poly_inv(poly a,const int&k){a=a.extend(k);if(k==1)return poly(0,ksm(a[0],mod-2));poly f0=poly_inv(a,(k+1)>>1);return (2*f0-((f0*f0.extend(k))*a).extend(k)).extend(k);}inline poly poly_sqrt(poly a,const int&k){a=a.extend(k);if(k==1)return poly(0,1);poly f0=poly_sqrt(a,(k+1)>>1).extend(k);return (((f0*f0).extend(k)+a)*poly_inv((2*f0),k)).extend(k);}
};
int main(){n=read(),m=read();int len;for(len=1;len<=m;len<<=1);poly sqr=(len);for(ri i=1,v;i<=n;++i){v=read();if(v<=m)sqr[v]=mod-4;}++sqr[0],sqr=sqr.poly_sqrt(sqr,len),++sqr[0],sqr=sqr.poly_inv(sqr,len);for(ri i=1;i<=m;++i)cout<<mul(sqr[i],2)<<'\n';return 0;
}