【Linux】程序地址空间

程序地址空间

      • 首先引入地址空间的作用
      • 什么是地址空间
      • 为什么要有地址空间

首先引入地址空间的作用

  1 #include <stdio.h>2 #include <unistd.h>3 #include <stdlib.h>4 int g_val = 100;6 int main()7 {8   pid_t id = fork();9   if(id == 0)10   {11     int cnt = 0;12     while(1)13     {14       printf("I am child,pid : %d,ppid : %d,g_val : %d,&g_val : %p\n",getpid(),getppid(),g_val,&g_val);15       cnt++;16       sleep(1);17       if(cnt == 5)18       {19         g_val = 200;20         printf("child chage g_val 100 -> 200 success\n");21       }22     }23   }24   else 25   {26     //father27     while(1)28     {                                                                                                                                                29 30       printf("I am father,pid : %d,ppid : %d,g_val : %d,&g_val : %p\n",getpid(),getppid(),g_val,&g_val);31       sleep(1);32     }33   }34   return 0;35 }

我们发现,但我们子进程修改全局变量g_val的时候,父进程的g_val没有受到影响,但是他们的地址都是一样的,这是为什么呢?

在这里插入图片描述

由此我们知道,这里的地址绝对不是物理内存的地址,而是虚拟地址(线性地址);并且几乎所有语言,如果有地址的概念,这个地址一定不是物理地址,而是虚拟地址。物理地址是由操作系统保管的。以下我们就开始介绍虚拟内存的作用

什么是地址空间

首先基本了解一下地址空间的排布情况

目前我们先不考虑解析这里的共享区在这里插入图片描述

代码实现验证地址空间的排布

  1 #include <stdio.h>2 #include <unistd.h>3 #include <stdlib.h>4 int g_val = 100;5 int g_unval;6 int main(int argc,char *argv[],char *env[])7 {8   //代码区9   printf("code addr:%p\n",main);10   //初始化数据11   printf("init global addr:%p\n",&g_val);12   //未初始化数据13   printf("uninit global addr:%p\n",&g_unval);14   //堆区15   char* heap_mem = (char*)malloc(10);16   char* heap_mem1 = (char*)malloc(10);17   char* heap_mem2 = (char*)malloc(10);18   char* heap_mem3 = (char*)malloc(10);19   printf("heap_mem addr:%p\n",heap_mem);20   printf("heap_mem1 addr:%p\n",heap_mem1);21   printf("heap_mem2 addr:%p\n",heap_mem2);22   printf("heap_mem3 addr:%p\n",heap_mem3);23 24   //栈区25   printf("stack addr:%p\n",&heap_mem);26   printf("stack addr:%p\n",&heap_mem1);27   printf("stack addr:%p\n",&heap_mem2);28   printf("stack addr:%p\n",&heap_mem3);29 //字面常量30   const char *str = "helloworld";31   printf("read only string addr: %p\n", str);32   33   int i,j;34   //命令区                                                                                                35    for(i = 0 ;i < argc; i++)                                                                                                                                             36     {              37         printf("argv[%d]: %p\n", i, argv[i]);38     }        39   40  //环境区41  for(j = 0;env[j];++j)42  {43    printf("env[%d] addr:%p\n",j,&env[j]);44  }45 46   47   48   return 0;49 }

在这里插入图片描述

由此可见我们发现我们输入命令后,命令的地址在我们所执行的代码之后,这说明刚创建好这些变量就有了它自己本身的地址,地址程序结束后才打印,要分清前后

接下来我们来认识什么是地址空间
>

这时我们可以利用虚拟地址加映射机制(页表)来正确的讲地址存入物理内存
虚拟地址:不管哪个编译器,只要看到的地址都是虚拟地址,物理地址是操作系统保管的。
每一行代码都进行了编址。故,程序在编译的时候,每一个字段早已经具有了一个虚拟地址
=什么是映射机制?
映射机制可以将虚拟地址转换到物理地址,如果发现虚拟地址会越界或者错误,则就不会抛出,他起到了关键作用
那么映射机制是怎么判断的呢?
在这里插入图片描述
以上就是所描述的社么是地址空间,简单来说它是存储虚拟地址的。

在这里插入图片描述

地址空间和页表(用户级)是每一个进程都单独有一份的。
只要每一个进程的页表映射的是物理内存的不同区域,就可以做到进程之间不会互相干扰保证进程的独立性。

为什么要有地址空间

  1. 凡是非法的访问或者映射,os都会识别到,并终止你这个进程,有效的保护了物理内存。
    因为地址空间和页表是os创建并维护的,所以凡是使用地址空间和页表的都会在os的监控下来进行范文,这样就间接的保护了物理内存中的所有合法数据和各个进程,以及内核的相关有效数据
  2. 物理内存和进程的管理可以做到解耦合(没关联)。
    当我们申请了物理空间,但是我们不立即使用的时候,就会造成内存空间的浪费;
    针对这一现象,os做出了延迟分配的策略,来提高整机的效率。
    因为地址空间的存在,所有申请的空间都是在地址空间上申请的,物理内存不是被申请到一个字节,当我们真正访问物理地址的时候,才执行内存相关的算法。帮助申请内存,构建页表之间的映射关系,这些都是由os自主完成的
  3. 因为在物理内存中理论上随意加载,也是随意存放的,但是通过地址空间的虚拟地址和页表之间的映射,从进程视角来看所有的内存分布就成有序的了。
    因为有地址空间的存在,每一个进程都认为自己单独有一块4GB(32)空间,并且各个区域是有序的。进而通过页表映射到不同区域,来实现进程的独立性,各个进程是不知道其他进程的存在的

回答问题,为什么地址相同值不同
在这里插入图片描述

发生了写时拷贝!,所以父子进程各自其实在物理内存中,有属于自己的变量空间!只不过在用户层用同一个变量(虚拟地址!)来标识了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/36366.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动方向识别式 LSF型电平转换芯片

大家好&#xff0c;这里是大话硬件。 今天这篇文章想分享一下电平转换芯片相关的内容。 其实在之前的文章分享过一篇关于电平转换芯片的相关内容&#xff0c;具体可以看链接《高速电路逻辑电平转换设计》。当时这篇文章也是分析的电平转换芯片&#xff0c;不过那时候更多的是…

矩阵的转置

题目&#xff1a; 给你一个二维整数数组 matrix&#xff0c; 返回 matrix 的 转置矩阵 。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;[[1,4,7],[2,5,8],[3,6,9]]class Solution(object):def transpose(self, matrix):"&q…

JMeter 的并发设置教程

JMeter 是一个功能强大的性能测试工具&#xff0c;可以模拟许多用户同时访问应用程序的情况。在使用 JMeter 进行性能测试时&#xff0c;设置并发是非常重要的。本文将介绍如何在 JMeter 中设置并发和查看报告。 设置并发 并发是在线程组下的线程属性中设置的。 线程数&#…

3.解构赋值

解构赋值是一种快速为变量赋值的简洁语法&#xff0c;本质上仍然是为变量赋值。 3.1数组解构 数组解构是 将数组的单元值快速批量赋值给一系列变量 的简洁语法 1.基本语法: &#xff08;1&#xff09;赋值运算符左侧的[ ]用于批量声明变量&#xff0c;右侧数组的单元值将被赋…

前后端分离------后端创建笔记(04)前后端对接

本文章转载于【SpringBootVue】全网最简单但实用的前后端分离项目实战笔记 - 前端_大菜007的博客-CSDN博客 仅用于学习和讨论&#xff0c;如有侵权请联系 源码&#xff1a;https://gitee.com/green_vegetables/x-admin-project.git 素材&#xff1a;https://pan.baidu.com/s/…

【JavaEE进阶】Bean 作用域和生命周期

文章目录 一. 关于Bean作用域的实例1. lombok2. 实例代码 二. 作用域定义1. Bean的六种作用域2. 设置作用域 三. Spring 执行流程和 Bean 的生命周期1. Spring 执行流程2. Bean生命周期 一. 关于Bean作用域的实例 注意在此例子中需要用到lombok 1. lombok lombok是什么? Lo…

【C#】判断打印机共享状态

打印机共享状态 /// <summary>/// 打印机共享状态/// </summary>public enum PrinterShareState{/// <summary>/// 无打印机/// </summary>None -1,/// <summary>/// 未共享/// </summary>NotShare 0,/// <summary>/// 已共享/// …

soap通信2

首先&#xff0c;定义一个XSD&#xff08;XML Schema Definition&#xff09;来描述你的数据结构。在你的Maven项目的src/main/resources目录下&#xff0c;创建一个名为schemas的文件夹&#xff0c;并在其中创建一个名为scriptService.xsd的文件&#xff0c;内容如下&#xff…

【kubernetes】调度约束

目录 调度约束 Pod 启动典型创建过程如下 调度过程 指定调度节点 查看详细事件&#xff08;发现未经过 scheduler 调度分配&#xff09; 获取标签帮助 需要获取 node 上的 NAME 名称 给对应的 node 设置标签分别为 ggls 和 gglm 查看标签 修改成 nodeSelector 调度方…

vue学习笔记

1.官网 v2官网 https://v2.cn.vuejs.org/ v3官网 https://cn.vuejs.org/ 2.vue引入 在线引入 <script src"https://cdn.jsdelivr.net/npm/vue2.7.14/dist/vue.js"></script> 下载引入(下载链接) https://v2.cn.vuejs.org/js/vue.js 3.初始化渲…

Redis——通用命令介绍

Redis官方文档 redis官方文档 核心命令 set 将key和value存储到Redis中&#xff0c;key和value都是字符串 set key valueRedis中不区分大小写&#xff0c;字符串类型也不需要添加单引号或者双引号 get 根据key读取value&#xff0c;如果当前key不存在&#xff0c;则返回…

Offset Explorer

Offset Explorer 简介下载安装 简介 Offset Explorer&#xff08;以前称为Kafka Tool&#xff09;是一个用于管理和使Apache Kafka 集群的GUI应用程序。它提供了一个直观的UI&#xff0c;允许人们快速查看Kafka集群中的对象以及存储在集群主题中的消息。它包含面向开发人员和管…

RANSAC算法

RANSAC简介 RANSAC(RAndom SAmple Consensus,随机采样一致)算法是从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法。 “外点”一般指的的数据中的噪声&#xff0c;比如说匹配中的误匹配和估计曲线中的离群点。所以&#xff0c;RANSAC也是一种“外点”检…

若依-plus-vue启动显示Redis连接错误

用的Redis是windows版本&#xff0c;6.2.6 报错的主要信息如下&#xff1a; Failed to instantiate [org.redisson.api.RedissonClient]: Factory method redisson threw exception; nested exception is org.redisson.client.RedisConnectionException: Unable to connect t…

基于epoll的TCP服务器端(C++)

网络编程——C实现socket通信(TCP)高并发之epoll模式_tcp通信c 多客户端epoll_n大橘为重n的博客-CSDN博客 网络编程——C实现socket通信(TCP)高并发之select模式_n大橘为重n的博客-CSDN博客 server.cpp #include <stdio.h> #include <sys/types.h> #include <…

Coin Change

一、题目 Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make changes with these coins for a given amount of money. For example, if we have 11 cents, then we can make changes with one 10-cent coin and one 1-c…

springboot工程使用阿里云OSS传输文件

在application.yml文件中引入对应的配置&#xff0c;一个是对应的节点&#xff0c;两个是密钥和账号&#xff0c;还有一个是对应文件的名称&#xff1b; 采用这样方式进行解耦&#xff0c;便于后期修改。 然后需要设置一个properties类&#xff0c;去读对应的配置信息 用到了…

MySQL Linux自建环境备份至远端服务器自定义保留天数

环境准备 linux下安装mysql请看 Linux环境安装单节点mysql8.0.16 系统版本: CentOS 7 软件版本: mysql8.0.16 备份策略与实现方法 此次备份依赖mysql自带命令mysqldump与linux下crontab命令(定时任务) mysqldump mysqldump客户实用程序执行 逻辑备份,产生一组能够被执行…

为什么需要知识图谱,如何构建它?

从关系数据库迁移到图形数据库的指南 跟随 发表于 迈向数据科学 7 分钟阅读 4天前 154 4 一、说明 TLDR&#xff1a;知识图谱在图数据库中组织事件、人员、资源和文档&#xff0c;以进行高级分析。本文将解释知识图谱的用途&#xff0c;并向您展示如何将关系数据模型转换为图…

HTTP协议的发展过程

前言 HTTP协议是一种用于在网络上传输信息的应用层协议&#xff0c;它为万维网的运作提供了基础。 最早的版本是HTTP/0.9&#xff0c;它是HTTP协议的第一个版本&#xff0c;诞生于1991年&#xff0c;其设计初衷是为了在计算机之间传输简单的超文本文档&#xff0c;即HTML。 在…