果然我还是太菜了,爆了一天才过。。。。隔壁肉丝都不知道喊了多少句哎╮(╯▽╰)╭我又A了什么傻逼题(然鹅就是wf和国集的题QWQ)
其实这个题就是个裸题,但是我就是不会。。。
这个题第一步就是明显的旋转坐标系(不会的百度),注意要先平移坐标系再旋转
然后问题就变成x轴上下有一些线段,考虑覆盖长度为L的一段区间,看看区间内最接近x轴的线段的长度和(也可以直接按题意理解,好像更好懂)
线段是斜着的很难搞,但是假如覆盖了l~r的区间,那么也可以通过三角函数搞出线段长度
可以先弄一个类似离散化的东西,我的意思是每个线段的左右端点的x坐标为断点,相邻x坐标之间可以看成一段(大概就是这样不懂评论我)
主要问题在处理出每一段最接近x轴的线段是那一条,假如搞定了这个东西,我们可以正反枚举每个段,然后能要段就要,再加上下一个段的一部分更新答案,这个双指针扫一下就好
考虑按端点的x坐标上扫描线,对于线段有一个关键的性质,就是线段不相交,这里隐含着这么一个东西:假如线段u的左端点的x坐标较小,线段v的左端点在线段u的上方/下方,直到u被删除线段的上下关系都是不变的,否则线段就相交了
换句话说,不相交满足对于在任意一条线段的左右端点x坐标框住的区间中,任意一条线段和这一条线段的上下关系不变
那么有这个东西就可以做了,用set维护一下上方最下的线段和下方最上的线段即可
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> #include<set> using namespace std; typedef long double LD; const int _=1e2; const int maxn=1e4+_; const LD eps=1e-12; LD sqr(LD x){return x*x;} int n;struct point{LD x,y; point(){} point(LD X,LD Y){x=X,y=Y;}}; LD getdis(point p1,point p2){return sqrt(sqr(p1.x-p2.x)+sqr(p1.y-p2.y));} LD slope(point p1,point p2){return (p2.y-p1.y)/(p2.x-p1.x);} LD multi(point p1,point p2,point p0) {LD x1,y1,x2,y2;x1=p1.x-p0.x;y1=p1.y-p0.y;x2=p2.x-p0.x;y2=p2.y-p0.y;return x1*y2-x2*y1; }//------------------------------------------------def-----------------------------------------------------struct board {point A,B;LD g;//长度变化的比值 1/cosvoid getg(){g=getdis(A,B)/fabs(A.x-B.x);} }b[maxn];bool cmp(board b1,board b2){return b1.A.y<b2.A.y;} bool bbbbcmp(board b1,board b2){return b1.A.x<b2.A.x;}LD co,si; point rot(point p){return point(p.x*co-p.y*si,p.y*co+p.x*si);} void rotate() {LD d=getdis(b[n+1].A,b[n+1].B);co=fabs(b[n+1].A.x-b[n+1].B.x)/d;si=fabs(b[n+1].A.y-b[n+1].B.y)/d;if(b[n+1].A.x<b[n+1].B.x&&b[n+1].A.y<b[n+1].B.y)si=-si;for(int i=1;i<=n;i++){b[i].A.x-=b[n+1].A.x,b[i].A.y-=b[n+1].A.y;b[i].B.x-=b[n+1].A.x,b[i].B.y-=b[n+1].A.y;b[i].A=rot(b[i].A);b[i].B=rot(b[i].B);if(b[i].A.x>b[i].B.x)swap(b[i].A,b[i].B);b[i].getg();// printf("%.10Lf %.10Lf %.10Lf %.10Lf\n",b[i].A.x,b[i].A.y,b[i].B.x,b[i].B.y); } }//---------------------------------------------------rotate------------------------------------------------- LD xx[2*maxn];int xlen; bool xx_cmp(LD x1,LD x2){return x1<x2;} int up[2*maxn],dp[2*maxn];//xx[i]~xx[i-1]这一段被那条线段覆盖着 struct seg {int id;seg(){} seg(int ID){id=ID;}friend bool operator <(seg s1,seg s2){int x=s1.id,y=s2.id;if(x<y)return multi(b[x].B,b[y].A,b[x].A)>0;else return multi(b[y].B,b[x].A,b[y].A)<0;}friend bool operator >(seg s1,seg s2){int x=s1.id,y=s2.id;if(x<y)return multi(b[x].B,b[y].A,b[x].A)<0;else return multi(b[y].B,b[x].A,b[y].A)>0;} };set< seg,less<seg> >us;set< seg,greater<seg> >ds;struct qq{int op,p;seg s; qq(){} qq(int OP,int P,seg S){op=OP,p=P,s=S;}}uq[2*maxn],dq[2*maxn];int uqlen,dqlen; bool qqqqcmp(qq q1,qq q2){return q1.p==q2.p?q1.op>q2.op:q1.p<q2.p;}int lb(LD d) {int l=1,r=xlen;while(l<=r){int mid=(l+r)/2;if(fabs(xx[mid]-d)<=eps)return mid;if(xx[mid]>d)r=mid-1;else l=mid+1;} } void cover(int l1,int r1,int l2,int r2) {sort(b+l1,b+r1+1,bbbbcmp);sort(b+l2,b+r2+1,bbbbcmp);uqlen=dqlen=0;for(int i=l1;i<=r1;i++){uq[++uqlen]=qq( 1,lb(b[i].A.x)+1,seg(i));uq[++uqlen]=qq(-1,lb(b[i].B.x),seg(i));}for(int i=l2;i<=r2;i++){dq[++dqlen]=qq( 1,lb(b[i].A.x)+1,seg(i));dq[++dqlen]=qq(-1,lb(b[i].B.x),seg(i));}us.clear(),ds.clear();sort(uq+1,uq+uqlen+1,qqqqcmp);sort(dq+1,dq+dqlen+1,qqqqcmp);int utp=1,dtp=1;for(int i=1;i<=xlen;i++){while(utp<=uqlen&&uq[utp].p==i&&uq[utp].op==1)us.insert(uq[utp].s),utp++;while(dtp<=dqlen&&dq[dtp].p==i&&dq[dtp].op==1)ds.insert(dq[dtp].s),dtp++;if(!us.empty())up[i]=(*us.begin()).id; else up[i]=-1;if(!ds.empty())dp[i]=(*ds.begin()).id; else dp[i]=-1;while(utp<=uqlen&&uq[utp].p==i&&uq[utp].op==-1)us.erase(uq[utp].s),utp++;while(dtp<=dqlen&&dq[dtp].p==i&&dq[dtp].op==-1)ds.erase(dq[dtp].s),dtp++;} }//-----------------------------------------------cover------------------------------------------------------int main() {freopen("a.in","r",stdin);freopen("a.out","w",stdout);int T;scanf("%d",&T);while(T--){scanf("%d",&n);for(int i=1;i<=n+1;i++)scanf("%Lf%Lf%Lf%Lf",&b[i].A.x,&b[i].A.y,&b[i].B.x,&b[i].B.y);scanf("%Lf",&b[n+1].g);if(b[n+1].A.x>b[n+1].B.x)swap(b[n+1].A,b[n+1].B);rotate();//....step1.......int pp=n+1; sort(b+1,b+n+1,cmp);xlen=0;for(int i=1;i<=n;i++){if(b[i].A.y>0&&pp==n+1)pp=i;xx[++xlen]=b[i].A.x;xx[++xlen]=b[i].B.x;}sort(xx+1,xx+xlen+1);int tp=1;for(int j=2;j<=xlen;j++)if(fabs(xx[j]-xx[tp])>eps)xx[++tp]=xx[j];xlen=tp;cover(pp,n,1,pp-1);//....step2....... LD ans=0,sum=0;int j=1;for(int i=2;i<=xlen;i++){while(j<xlen&&(xx[j+1]-xx[i-1])<=b[n+1].g){j++;if(up[j]!=-1)sum+=(xx[j]-xx[j-1])*b[up[j]].g;if(dp[j]!=-1)sum+=(xx[j]-xx[j-1])*b[dp[j]].g;}LD num=0;if(j<xlen){if(up[j+1]!=-1)num+=min(xx[j+1]-xx[j],b[n+1].g-(xx[j]-xx[i-1]))*b[up[j+1]].g;if(dp[j+1]!=-1)num+=min(xx[j+1]-xx[j],b[n+1].g-(xx[j]-xx[i-1]))*b[dp[j+1]].g;}ans=max(ans,sum+num);if(up[i]!=-1)sum-=(xx[i]-xx[i-1])*b[up[i]].g;if(dp[i]!=-1)sum-=(xx[i]-xx[i-1])*b[dp[i]].g;// printf("%.10Lf %.10Lf %.10Lf\n",xx[i]-xx[i-1],b[up[i]].g,b[dp[i]].g); }j=xlen;sum=0;for(int i=xlen;i>1;i--){while(j>1&&(xx[i]-xx[j-1])<=b[n+1].g){if(up[j]!=-1)sum+=(xx[j]-xx[j-1])*b[up[j]].g;if(dp[j]!=-1)sum+=(xx[j]-xx[j-1])*b[dp[j]].g;j--;}LD num=0;if(j>1){if(up[j]!=-1)num+=min(xx[j]-xx[j-1],b[n+1].g-(xx[i]-xx[j]))*b[up[j]].g;if(dp[j]!=-1)num+=min(xx[j]-xx[j-1],b[n+1].g-(xx[i]-xx[j]))*b[dp[j]].g;}ans=max(ans,sum+num);if(up[i]!=-1)sum-=(xx[i]-xx[i-1])*b[up[i]].g;if(dp[i]!=-1)sum-=(xx[i]-xx[i-1])*b[dp[i]].g;}printf("%.10Lf\n",ans); // break;//....step3....... }return 0; }