Pytest测试框架3

目录:

  1. pytest结合数据驱动-yaml
  2. pytest结合数据驱动-excel
  3. pytest结合数据驱动-csv
  4. pytest结合数据驱动-json
  5. pytest测试用例生命周期管理(一)
  6. pytest测试用例生命周期管理(二)
  7. pytest测试用例生命周期管理(三)
  8. pytest测试用例生命周期管理-自动注册
  9. pytest测试用例生命周期管理-自动生效
  10. pytestfixture实现参数化

1.pytest结合数据驱动-yaml

数据驱动

  • 什么是数据驱动?

    • 数据驱动就是数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变。简单来说,就是参数化的应用。数据量小的测试用例可以使用代码的参数化来实现数据驱动,数据量大的情况下建议大家使用一种结构化的文件(例如 yaml,json 等)来对数据进行存储,然后在测试用例中读取这些数据。
  • 应用:

    • App、Web、接口自动化测试
    • 测试步骤的数据驱动
    • 测试数据的数据驱动
    • 配置的数据驱动

yaml 文件介绍 

  • 对象:键值对的集合,用冒号 “:” 表示
  • 数组:一组按次序排列的值,前加 “-”
  • 纯量:单个的、不可再分的值
    • 字符串
    • 布尔值
    • 整数
    • 浮点数
    • Null
    • 时间
    • 日期
# 编程语言
languages:- PHP- Java- Python
book:Python入门: # 书籍名称price: 55.5author: Lilyavailable: Truerepertory: 20date: 2018-02-17Java入门:price: 60author: Lilyavailable: Falserepertory: Nulldate: 2018-05-11

yaml 文件使用

  • 查看 yaml 文件
    • pycharm
    • txt 记事本
  • 读取 yaml 文件
    • 安装:pip install pyyaml
    • 方法:yaml.safe_load(f)
    • 方法:yaml.safe_dump(f)
import yamlfile_path = './my.yaml'
with open(file_path, 'r', encoding='utf-8') as f:data = yaml.safe_load(f)

 代码实例:

工程目录结构

  • data 目录:存放 yaml 数据文件
  • func 目录:存放被测函数文件
  • testcase 目录:存放测试用例文件
# 工程目录结构
.
├── data
│   └── data.yaml
├── func
│   ├── __init__.py
│   └── operation.py
└── testcase├── __init__.py└── test_add.py

 测试准备

  • 被测对象:operation.py
  • 测试用例:test_add.py
  • 测试数据:data.yaml
# operation.py 文件内容
def my_add(x, y):result = x + yreturn result
# test_add.py 文件内容
class TestWithYAML:@pytest.mark.parametrize('x,y,expected', [[1, 1, 2]])def test_add(self, x, y, expected):assert my_add(int(x), int(y)) == int(expected)
# data.yaml 文件内容
-- 1- 1- 2
-- 3- 6- 9
-- 100- 200- 300
import pytest
import yamlfrom func.operation import my_add# 方法一
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', [[1, 1, 2], [3, 6, 9], [100, 200, 300]])
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法二
def get_data():with open("../data/data.yaml", encoding='utf-8') as f:data = yaml.safe_load(f)return dataclass TestWithYAML:@pytest.mark.parametrize('x,y,expected', get_data())def test_add(self, x, y, expected):assert my_add(int(x), int(y)) == int(expected)

2.pytest结合数据驱动-excel

读取 Excel 文件

  • 第三方库

    • xlrd
    • xlwings
    • pandas
  • openpyxl

    • 官方文档: https://openpyxl.readthedocs.io/en/stable/

openpyxl 库的安装

  • 安装:pip install openpyxl
  • 导入:import openpyxl

openpyxl 库的操作

  • 读取工作簿

  • 读取工作表

  • 读取单元格

import openpyxl# 获取工作簿
book = openpyxl.load_workbook('./data/test.xlsx')# 读取工作表
sheet = book.active
print(sheet)# 读取单个单元格
cell_a1 = sheet['A1']
print(cell_a1.value)cell_a3 = sheet.cell(column=1, row=3)  # A3
print(cell_a3.value)# 读取多个连续单元格
cells = sheet["A1":"C3"]
for i in cells:for j in i:print(j.value,end=' ')print()

 代码实例:

import openpyxl
import pytest
import yamlfrom func.operation import my_add# 方法一
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', [[1, 1, 2], [3, 6, 9], [100, 200, 300]])
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法二
# def get_data():
#     with open("../data/data.yaml", encoding='utf-8') as f:
#         data = yaml.safe_load(f)
#     return data
#
#
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', get_data())
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法三
def get_excel():book = openpyxl.load_workbook("../data/test.xlsx")sheet = book.activecells = sheet["A1":"C3"]values = []for row in cells:data = []for cell in row:data.append(cell.value)values.append(data)return valuesclass TestWithYAML:@pytest.mark.parametrize('x,y,expected', get_excel())def test_add(self, x, y, expected):assert my_add(int(x), int(y)) == int(expected)

3.pytest结合数据驱动-csv

csv 文件介绍

  • csv:逗号分隔值
  • 是 Comma-Separated Values 的缩写
  • 以纯文本形式存储数字和文本
  • 文件由任意数目的记录组成
  • 每行记录由多个字段组成
Linux从入门到高级,linux,¥5000
web自动化测试进阶,python,¥3000
app自动化测试进阶,python,¥6000
Docker容器化技术,linux,¥5000
测试平台开发与实战,python,¥8000

 csv 文件使用

  • 读取数据

    • 内置函数:open()
    • 内置模块:csv
  • 方法:csv.reader(iterable)

    • 参数:iterable ,文件或列表对象
    • 返回:迭代器,每次迭代会返回一行数据。
import csvdef get_csv():with open('./data/params.csv', 'r', encoding='utf-8') as file:raw = csv.reader(file)for line in raw:print(line)if __name__ == '__main__':get_csv()

代码实例:

测试准备

  • 被测对象:operation.py

  • 测试用例:test_add.py

  • 测试数据:params.csv

# operation.py 文件内容
def my_add(x, y):result = x + yreturn result# test_add.py 文件内容
class TestWithCSV:@pytest.mark.parametrize('x,y,expected', [[1, 1, 2]])def test_add(self, x, y, expected):assert my_add(int(x), int(y)) == int(expected)# params.csv 文件内容
1,1,2
3,6,9
100,200,300
import csvimport openpyxl
import pytest
import yamlfrom func.operation import my_add# 方法一
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', [[1, 1, 2], [3, 6, 9], [100, 200, 300]])
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法二
# def get_data():
#     with open("../data/data.yaml", encoding='utf-8') as f:
#         data = yaml.safe_load(f)
#     return data
#
#
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', get_data())
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法三
# def get_excel():
#     book = openpyxl.load_workbook("../data/test.xlsx")
#     sheet = book.active
#     cells = sheet["A1":"C3"]
#     values = []
#     for row in cells:
#         data = []
#         for cell in row:
#             data.append(cell.value)
#         values.append(data)
#     return values
#
#
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', get_excel())
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法四
def get_csv():with open('../data/test.csv', encoding='utf-8') as f:raw = csv.reader(f)data = []for line in raw:data.append(line)return dataclass TestWithYAML:@pytest.mark.parametrize('x,y,expected', get_csv())def test_add(self, x, y, expected):assert my_add(int(x), int(y)) == int(expected)

4.pytest结合数据驱动-json

json 文件介绍

  • json 是 JS 对象

  • 全称是 JavaScript Object Notation

  • 是一种轻量级的数据交换格式

  • json 结构

    • 对象 {"key": value}
    • 数组 [value1, value2 ...]
{"name:": "tom","detail": {"course": "python","city": "北京"},"remark": [1000, 666, 888]
}

 json 文件使用

  • 查看 json 文件
    • pycharm
    • txt 记事本
  • 读取 json 文件
    • 内置函数 open()
    • 内置库 json
    • 方法:json.loads()
    • 方法:json.dumps()

 params.json

{"case1": [1, 1, 2],"case2": [3, 6, 9],"case3": [100, 200, 300]
}
import jsondef get_json():with open('./data/params.json', 'r') as f:data = json.loads(f.read())print(data)print(type(data))s = json.dumps(data, ensure_ascii=False)print(s)print(type(s))if __name__ == '__main__':get_json()

代码示例:

测试准备

  • 被测对象:operation.py

  • 测试用例:test_add.py

  • 测试数据:params.json

# operation.py 文件内容
def my_add(x, y):result = x + yreturn result# test_add.py 文件内容
class TestWithJSON:@pytest.mark.parametrize('x,y,expected', [[1, 1, 2]])def test_add(self, x, y, expected):assert my_add(int(x), int(y)) == int(expected)# params.json 文件内容
{"case1": [1, 1, 2],"case2": [3, 6, 9],"case3": [100, 200, 300]
}
import csv
import jsonimport openpyxl
import pytest
import yamlfrom func.operation import my_add# 方法一
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', [[1, 1, 2], [3, 6, 9], [100, 200, 300]])
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法二
# def get_data():
#     with open("../data/data.yaml", encoding='utf-8') as f:
#         data = yaml.safe_load(f)
#     return data
#
#
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', get_data())
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法三
# def get_excel():
#     book = openpyxl.load_workbook("../data/test.xlsx")
#     sheet = book.active
#     cells = sheet["A1":"C3"]
#     values = []
#     for row in cells:
#         data = []
#         for cell in row:
#             data.append(cell.value)
#         values.append(data)
#     return values
#
#
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', get_excel())
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法四
# def get_csv():
#     with open('../data/test.csv', encoding='utf-8') as f:
#         raw = csv.reader(f)
#         data = []
#         for line in raw:
#             data.append(line)
#     return data
#
#
# class TestWithYAML:
#     @pytest.mark.parametrize('x,y,expected', get_csv())
#     def test_add(self, x, y, expected):
#         assert my_add(int(x), int(y)) == int(expected)# 方法五
def get_json():with open('../data/params.json', 'r') as f:data = json.loads(f.read())print(data)print(type(data))print(list(data.values()))return list(data.values())class TestWithYAML:@pytest.mark.parametrize('x,y,expected', get_json())def test_add(self, x, y, expected):assert my_add(int(x), int(y)) == int(expected)

5.pytest测试用例生命周期管理(一)

Fixture 特点及优势

  • 1、命令灵活:对于 setup,teardown,可以不起这两个名字
  • 2、数据共享:在 conftest.py 配置⾥写⽅法可以实现数据共享,不需要 import 导⼊。可以跨⽂件共享
  • 3、scope 的层次及神奇的 yield 组合相当于各种 setup 和 teardown
  • 4、实现参数化

Fixture 在自动化中的应用- 基本用法

  • 场景:

测试⽤例执⾏时,有的⽤例需要登陆才能执⾏,有些⽤例不需要登陆。

setup 和 teardown ⽆法满⾜。fixture 可以。默认 scope(范围)function

  • 步骤:
    • 1.导⼊ pytest
    • 2.在登陆的函数上⾯加@pytest.fixture()
    • 3.在要使⽤的测试⽅法中传⼊(登陆函数名称),就先登陆
    • 4.不传⼊的就不登陆直接执⾏测试⽅法。
import pytest@pytest.fixture()
def login():print('完成登录操作')def test_search():print('搜索')# def test_cart():
#     login()
#     print('购物车')def test_cart(login):print('购物车')def test_order(login):print('下单功能')

6.pytest测试用例生命周期管理(二)

Fixture 在自动化中的应用 - 作用域

取值范围说明
function函数级每一个函数或方法都会调用
class类级别每个测试类只运行一次
module模块级每一个.py 文件调用一次
package包级每一个 python 包只调用一次(暂不支持)
session会话级每次会话只需要运行一次,会话内所有方法及类,模块都共享这个方法
import pytest@pytest.fixture(scope="function")
def login():print('完成登录操作')def test_search():print('搜索')# def test_cart():
#     login()
#     print('购物车')def test_cart(login):print('购物车')def test_order(login):print('下单功能')class TestDemo:def test_case1(self, login):print("case1")def test_case2(self, login):print("case2")

7.pytest测试用例生命周期管理(三)

Fixture 在自动化中的应用 - yield 关键字

  • 场景:

你已经可以将测试⽅法【前要执⾏的或依赖的】解决了,测试⽅法后销毁清除数据的要如何进⾏呢?

  • 解决:

通过在 fixture 函数中加⼊ yield 关键字,yield 是调⽤第⼀次返回结果,第⼆次执⾏它下⾯的语句返回。

  • 步骤:

在@pytest.fixture(scope=module)。在登陆的⽅法中加 yield,之后加销毁清除的步骤

import pytest
'''
@pytest.fixture
def fixture_name():setup 操作yield 返回值teardown 操作
'''@pytest.fixture(scope="function")
def login():#setup操作print('完成登录操作')tocken = "abcdafafasdfds"username = 'tom'yield tocken,username #相当于return#teardown操作print('完成登出操作')def test_search():print('搜索')# def test_cart():
#     login()
#     print('购物车')def test_cart(login):print('购物车')def test_order(login):print('下单功能')class TestDemo:def test_case1(self, login):print("case1")def test_case2(self, login):print("case2")

8.pytest测试用例生命周期管理-自动注册

Fixture 在自动化中的应用 - 数据共享

  • 场景:

与其他测试⼯程师合作⼀起开发时,公共的模块要放在⼤家都访问到的地⽅。

  • 解决:

使⽤ conftest.py 这个⽂件进⾏数据共享,并且他可以放在不同位置起着不同的范围共享作⽤。

  • 前提:

    • conftest ⽂件名是不能换的
    • 放在项⽬下是全局的数据共享的地⽅
  • 执⾏:

    • 系统执⾏到参数 login 时先从本模块中查找是否有这个名字的变量什么的,
    • 之后在 conftest.py 中找是否有。
  • 步骤:

将登陆模块带@pytest.fixture 写在 conftest.py 里面

代码示例:

conftest.py

# conftest.py名字是固定的,不能改变
import pytest@pytest.fixture(scope="function")
def login():# setup操作print('完成登录操作')tocken = "abcdafafasdfds"username = 'tom'yield tocken, username  # 相当于return# teardown操作print('完成登出操作')

test_test1.py

import pytest
'''
@pytest.fixture
def fixture_name():setup 操作yield 返回值teardown 操作
'''def test_search():print('搜索')# def test_cart():
#     login()
#     print('购物车')def test_cart(login):print('购物车')def test_order(login):print('下单功能')class TestDemo:def test_case1(self, login):print("case1")def test_case2(self, login):print("case2")

项目结构:

9.pytest测试用例生命周期管理-自动生效

Fixture 在自动化中的应用 - 自动应用

场景:

不想原测试⽅法有任何改动,或全部都⾃动实现⾃动应⽤,

没特例,也都不需要返回值时可以选择⾃动应⽤

解决:

使⽤ fixture 中参数 autouse=True 实现

步骤:

在⽅法上⾯加 @pytest.fixture(autouse=True)

test_test1.py

import pytest'''
@pytest.fixture
def fixture_name():setup 操作yield 返回值teardown 操作
'''def test_search():print('搜索')# def test_cart():
#     login()
#     print('购物车')# def test_cart(login):
#     print('购物车')
def test_cart():print('购物车')# def test_order(login):
#     print('下单功能')def test_order():print('下单功能')class TestDemo:# def test_case1(self, login):#     print("case1")def test_case1(self):print("case1")# def test_case2(self, login):#     print("case2")def test_case2(self):print("case2")

 conftest.py

# conftest.py名字是固定的,不能改变
import pytest@pytest.fixture(scope="function", autouse=True)
def login():# setup操作print('完成登录操作')tocken = "abcdafafasdfds"username = 'tom'yield tocken, username  # 相当于return# teardown操作print('完成登出操作')

运行结果:

 

 10.pytestfixture实现参数化

Fixture 在自动化中的应用 -参数化

场景:

测试离不开数据,为了数据灵活,⼀般数据都是通过参数传的

解决:

fixture 通过固定参数 request 传递

步骤:

在 fixture 中增加@pytest.fixture(params=[1, 2, 3, ‘linda’])

在⽅法参数写 request,方法体里面使用 request.param 接收参数

# @pytest.fixture(params=['tom', 'jenny'])
# def login(request):
#     print(f"用户名:{request.param}")
#     return request.param
#
#
# def test_demo1(login):
#     print(f'demo1 case:数据为{login}')@pytest.fixture(params=[['tom', 'harry'], ['jenny', 'jack']])
def login(request):print(f"用户名:{request.param}")return request.paramdef test_demo1(login):print(f'demo1 case:数据为{login}')

Fixture 的用法总结

  • 模拟 setup,teardown(一个用例可以引用多个 fixture)
  • yield 的用法
  • 作用域( session,module, 类级别,方法级别 )
  • 自动执行 (autouse 参数)
  • conftest.py 用法,一般会把 fixture 写在 conftest.py 文件中(这个文件名字是固定的,不能改)
  • 实现参数化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/35142.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UG NX二次开发(C#)-CAM-获取刀具类型

文章目录 1、前言2、UG NX中的刀具类型3、获取刀具类型3.1 刀具类型帮助文档1、前言 在UG NX的加工模块,加工刀具是一个必要的因素,其包括了多种类型的类型,有铣刀、钻刀、车刀、磨刀、成型刀等等,而且每种刀具所包含的信息也各不相同。想获取刀具的信息,那就要知道刀具的…

2023最新水果编曲软件FL Studio 21.1.0.3267音频工作站电脑参考配置单及系统配置要求

音乐在人们心中的地位日益增高,近几年音乐选秀的节目更是层出不穷,喜爱音乐,创作音乐的朋友们也是越来越多,音乐的类型有很多,好比古典,流行,摇滚等等。对新手友好程度基本上在首位,…

【报童模型】随机优化问题二次规划

面对需求的不确定性,报童模型是做库存优化的常见模型。而标准报童模型假设价格是固定的,此时求解一个线性规划问题,可以得到最优订货量,这种模型存在局限性。因为现实世界中价格与需求存在一定的关系,本文假设需求q是价…

LNMP环境介绍和搭建

一.LNMP简介 1.含义 2.工作原理 二.部署LNMP环境 1.Nginx环境 (1)上传nginx包,下载编译安装工具并解包到指定目录(tar 参数 tar包 - C 目录路径) (2) 开始编译安装,每次编译后…

nbcio-boot升级到3.1后出现online表单新增报错

nbcio-boot升级springboot、mybatis-plus和JSQLParser后出现新增online表单的时候报错,如下: 2023-08-13 21:18:01.292 [http-nio-8080-exec-12] [1;31mERROR[0;39m [36mo.jeecg.common.exception.JeecgBootExceptionHandler:69[0;39m - Handler dispat…

【JVM】JVM垃圾收集器

文章目录 什么是JVM垃圾收集器四种垃圾收集器(按类型分)1.串行垃圾收集器(效率低)2.并行垃圾收集器(JDK8默认使用此垃圾回收器)3.CMS(并发)垃圾收集器(只针对老年代垃圾回收的)4.G1垃圾回收器(在…

设计模式之七:适配器模式与外观模式

面向对象适配器将一个接口转换成另一个接口,以符合客户的期望。 // 用火鸡来冒充一下鸭子class Duck { public:virtual void quack() 0;virtual void fly() 0; };class Turkey { public:virtual void gobble() 0;virtual void fly() 0; };class TurkeyAdapter :…

Linux 1.2.13 -- IP分片重组源码分析

Linux 1.2.13 -- IP分片重组源码分析 引言为什么需要分片传输层是否存在分段操作IP分片重组源码分析ip_createip_findip_frag_createip_doneip_glueip_freeip_expireip_defragip_rcv 总结 本文源码解析参考: 深入理解TCP/IP协议的实现之ip分片重组 – 基于linux1.2.13 计网理论…

树莓派RP2040 用Arduino IDE安装和编译

目录 1 Arduino IDE 1.1 IDE下载 1.2 安装 arduino mbed os rp2040 boards 2 编程-烧录固件 2.1 打开点灯示例程序 2.2 选择Raspberry Pi Pico开发板 2.3 编译程序 2.4 烧录程序 2.4.1 Raspberry Pi Pico开发板首次烧录提示失败 2.4.2 解决首次下载失败问题 2.4.2.1…

无涯教程-Perl - recv函数

描述 This function receives a message on SOCKET attempting to read LENGTH bytes, placing the data read into variable SCALAR.The FLAGS argument takes the same values as the recvfrom( ) system function, on which the function is based. When communicating wit…

论文浅尝 | 面向多步推理任务专业化较小语言模型

笔记整理:张沈昱,东南大学硕士,研究方向为自然语言处理 链接:https://github.com/FranxYao/FlanT5-CoT-Specialization 动机 本文的动机是探索如何在多步推理任务中通过大型语言模型提升较小的语言模型的性能。作者认为&#xff0…

云开发超多功能工具箱组合微信小程序源码/附带流量主

介绍: 这是一款云开发超多功能工具箱组合微信小程序源码附带流量主功能,小程序内包含了40余个功能,堪称全能工具箱了,大致功能如下: 证件照制作 | 垃圾分类查询 | 个性签名制作 二维码生成丨文字九宫格 | 手持弹幕丨…

使用GraphQL在Postman中进行API测试

GraphQL 是一种用于API的开源数据查询和操作语言,用于API的查询语言和运行时。它使客户端能够精确地指定其数据需求,并获得预测性地结果。GraphQL旨在提高API的效率、灵活性和可靠性。 Postman 是一款用于API开发的强大工具,它支持REST和Gra…

LVS简介及LVS-DR搭建

目录 一. LVS简介: 1.简介 2. LVS工作模式: 3. LVS调度算法: 4. LVS-DR集群介绍: 二.LVS-DR搭建 1.RS配置 1)两台RS,需要下载好httpd软件并准备好配置文件 2)添加虚拟IP(vip&…

Python爬虫——requests_cookie登陆古诗文网

寻找登陆需要的参数 __VIEWSTATE:aiMG0UXAfCzak10C7436ZC/RXoZbM2lDlX1iU/4wjjdUNsW8QUs6W2/3M6XIKagQZrC7ooD8Upj8uCnpQMXjDAp6fS/NM2nGhnKO0KOSXfT3jGHhJAOBouMI3QnlpJCQKPXfVDJPYwh169MGLFC6trY __VIEWSTATEGENERATOR: C93BE1AE from: http://so.gushiwen.cn/user/collect.…

linux 命令--查看网络端口命令

使用 netstat 检查端口 netstat 是一个命令行工具,可以提供有关网络连接的信息。 netstat - atulnp会显示所有端口和所有对应的程序,用grep管道可以过滤出想要的字段 -a :all,表示列出所有的连接,服务监听&#xff…

Android JNI开发从0到1,java调C,C调Java,保姆级教程详解

前些天发现了一个蛮有意思的人工智能学习网站,8个字形容一下"通俗易懂,风趣幽默",感觉非常有意思,忍不住分享一下给大家。 👉点击跳转到教程 第一步首先配置Android studio的NDK开发环境,首先在Android studio中下载NDK…

ASIC芯片设计全流程项目实战课重磅上线 ,支持 65nm制程流片 !

全流程项目实战课学什么? 此次推出【 ASIC芯片设计全流程项目实战课】,基于IPA图像处理加速器,以企业级真实ASIC项目为案例,学员可参与全流程项目实践,以及65nm真实流片! 众所周知,放眼整个IC硕…

【Linux】【驱动】驱动框架以及挂载驱动

【Linux】【驱动】驱动框架以及挂载驱动 绪论1.配置开发环境2. 编写驱动文件3. 编译Makefile文件4.编译5. 挂载驱动注意:有些开发板打开了或者禁止了printk信息,导致你看到的实验现象可能不一样,此时已经将文件移动到了开发板中,开发板查看文…

WebRTC音视频通话-新增或修改SDP中的码率Bitrate限制

WebRTC音视频通话-新增或修改SDP中的码率Bitrate限制参数 之前搭建ossrs服务,可以查看:https://blog.csdn.net/gloryFlow/article/details/132257196 之前实现iOS端调用ossrs音视频通话,可以查看:https://blog.csdn.net/gloryFlo…