深度学习(37)—— 图神经网络GNN(2)

深度学习(37)—— 图神经网络GNN(2)

这一期主要是一些简单示例,针对不同的情况,使用的数据都是torch_geometric的内置数据集

文章目录

  • 深度学习(37)—— 图神经网络GNN(2)
    • 1. 一个graph对节点分类
    • 2. 多个graph对图分类
    • 3.Cluster-GCN:当遇到数据很大的图

1. 一个graph对节点分类

from torch_geometric.datasets import Planetoid  # 下载数据集用的
from torch_geometric.transforms import NormalizeFeatures
from torch_geometric.nn import GCNConv
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import torch
from torch.nn import Linear
import torch.nn.functional as F# 可视化部分
def visualize(h, color):z = TSNE(n_components=2).fit_transform(h.detach().cpu().numpy())plt.figure(figsize=(10, 10))plt.xticks([])plt.yticks([])plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")plt.show()# 加载数据
dataset = Planetoid(root='data/Planetoid', name='Cora', transform=NormalizeFeatures())  # transform预处理
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')data = dataset[0]  # Get the first graph object.
print()
print(data)
print('===========================================================================================================')# Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}')
print(f'Has isolated nodes: {data.has_isolated_nodes()}')
print(f'Has self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')# 网络定义
class GCN(torch.nn.Module):def __init__(self, hidden_channels):super().__init__()torch.manual_seed(1234567)self.conv1 = GCNConv(dataset.num_features, hidden_channels)self.conv2 = GCNConv(hidden_channels, dataset.num_classes)def forward(self, x, edge_index):x = self.conv1(x, edge_index)x = x.relu()x = F.dropout(x, p=0.5, training=self.training)x = self.conv2(x, edge_index)return xmodel = GCN(hidden_channels=16)
print(model)# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()def train():model.train()optimizer.zero_grad()out = model(data.x, data.edge_index)loss = criterion(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()return lossdef test():model.eval()out = model(data.x, data.edge_index)pred = out.argmax(dim=1)test_correct = pred[data.test_mask] == data.y[data.test_mask]test_acc = int(test_correct.sum()) / int(data.test_mask.sum())return test_accfor epoch in range(1, 101):loss = train()print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')
model.eval()
out = model(data.x, data.edge_index)
visualize(out, color=data.y)

2. 多个graph对图分类

  • 图也可以进行batch,做法和图像以及文本的batch是一样的
  • 和对一张图中的节点分类不同的是:多了聚合操作 将各个节点特征汇总成全局特征,将其作为整个图的编码
import torch
from torch_geometric.datasets import TUDataset  # 分子数据集:https://chrsmrrs.github.io/datasets/
from torch_geometric.loader import DataLoader
from torch.nn import Linear
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.nn import global_mean_pool# 加载数据
dataset = TUDataset(root='data/TUDataset', name='MUTAG')
print(f'Dataset: {dataset}:')
print('====================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')data = dataset[0]  # Get the first graph object.
print(data)
print('=============================================================')# Gather some statistics about the first graph.
# print(f'Number of nodes: {data.num_nodes}')
# print(f'Number of edges: {data.num_edges}')
# print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
# print(f'Has isolated nodes: {data.has_isolated_nodes()}')
# print(f'Has self-loops: {data.has_self_loops()}')
# print(f'Is undirected: {data.is_undirected()}')train_dataset = dataset
print(f'Number of training graphs: {len(train_dataset)}')# 数据用dataloader加载
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
for step, data in enumerate(train_loader):print(f'Step {step + 1}:')print('=======')print(f'Number of graphs in the current batch: {data.num_graphs}')print(data)print()# 模型定义
class GCN(torch.nn.Module):def __init__(self, hidden_channels):super(GCN, self).__init__()torch.manual_seed(12345)self.conv1 = GCNConv(dataset.num_node_features, hidden_channels)self.conv2 = GCNConv(hidden_channels, hidden_channels)self.conv3 = GCNConv(hidden_channels, hidden_channels)self.lin = Linear(hidden_channels, dataset.num_classes)def forward(self, x, edge_index, batch):# 1.对各节点进行编码x = self.conv1(x, edge_index)x = x.relu()x = self.conv2(x, edge_index)x = x.relu()x = self.conv3(x, edge_index)# 2. 平均操作x = global_mean_pool(x, batch)  # [batch_size, hidden_channels]# 3. 输出x = F.dropout(x, p=0.5, training=self.training)x = self.lin(x)return xmodel = GCN(hidden_channels=64)
print(model)# 训练
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.CrossEntropyLoss()
def train():model.train()for data in train_loader:  # Iterate in batches over the training dataset.out = model(data.x, data.edge_index, data.batch)  # Perform a single forward pass.loss = criterion(out, data.y)  # Compute the loss.loss.backward()  # Derive gradients.optimizer.step()  # Update parameters based on gradients.optimizer.zero_grad()  # Clear gradients.def test(loader):model.eval()correct = 0for data in loader:  # Iterate in batches over the training/test dataset.out = model(data.x, data.edge_index, data.batch)pred = out.argmax(dim=1)  # Use the class with highest probability.correct += int((pred == data.y).sum())  # Check against ground-truth labels.return correct / len(loader.dataset)  # Derive ratio of correct predictions.for epoch in range(1, 3):train()train_acc = test(train_loader)print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}')

3.Cluster-GCN:当遇到数据很大的图

  • 传统的GCN,层数越多,计算越大
  • 针对每个cluster进行GCN计算之后更新,数据量会小很多

但是存在问题:如果将一个大图聚类成多个小图,最大的问题是如何丢失这些子图之间的连接关系?——在每个batch中随机将batch里随机n个子图连接起来再计算
在这里插入图片描述

  • 使用torch_geometric的内置方法

    • 首先使用cluster方法分区
    • 之后使用clusterloader构建batch

【即】分区后对每个区域进行batch的分配

# 遇到特别大的图该怎么办?
# 图中点和边的个数都非常大的时候会遇到什么问题呢?
# 当层数较多时,显存不够import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures
from torch_geometric.loader import ClusterData, ClusterLoaderdataset = Planetoid(root='data/Planetoid', name='PubMed', transform=NormalizeFeatures())
print(f'Dataset: {dataset}:')
print('==================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')data = dataset[0]  # Get the first graph object.
print(data)
print('===============================================================================================================')# Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.3f}')
print(f'Has isolated nodes: {data.has_isolated_nodes()}')
print(f'Has self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')# 数据分区构建batch,构建好batch,1个epoch中有4个batch
torch.manual_seed(12345)
cluster_data = ClusterData(data, num_parts=128)  # 1. 分区
train_loader = ClusterLoader(cluster_data, batch_size=32, shuffle=True)  # 2. 构建batch.total_num_nodes = 0
for step, sub_data in enumerate(train_loader):print(f'Step {step + 1}:')print('=======')print(f'Number of nodes in the current batch: {sub_data.num_nodes}')print(sub_data)print()total_num_nodes += sub_data.num_nodes
print(f'Iterated over {total_num_nodes} of {data.num_nodes} nodes!')# 模型定义
class GCN(torch.nn.Module):def __init__(self, hidden_channels):super(GCN, self).__init__()torch.manual_seed(12345)self.conv1 = GCNConv(dataset.num_node_features, hidden_channels)self.conv2 = GCNConv(hidden_channels, dataset.num_classes)def forward(self, x, edge_index):x = self.conv1(x, edge_index)x = x.relu()x = F.dropout(x, p=0.5, training=self.training)x = self.conv2(x, edge_index)return xmodel = GCN(hidden_channels=16)
print(model)# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()def train():model.train()for sub_data in train_loader:out = model(sub_data.x, sub_data.edge_index)loss = criterion(out[sub_data.train_mask], sub_data.y[sub_data.train_mask])loss.backward()optimizer.step()optimizer.zero_grad()def test():model.eval()out = model(data.x, data.edge_index)pred = out.argmax(dim=1)accs = []for mask in [data.train_mask, data.val_mask, data.test_mask]:correct = pred[mask] == data.y[mask]accs.append(int(correct.sum()) / int(mask.sum()))return accsfor epoch in range(1, 51):loss = train()train_acc, val_acc, test_acc = test()print(f'Epoch: {epoch:03d}, Train: {train_acc:.4f}, Val Acc: {val_acc:.4f}, Test Acc: {test_acc:.4f}')

这个还是很基础的一些,下一篇会说如何定义自己的数据。还有进阶版的案例。
所有项目代码已经放在github上了,欢迎造访

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/34108.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

list模拟实现【引入反向迭代器】

文章目录 1.适配器1.1传统意义上的适配器1.2语言里的适配器1.3理解 2.list模拟实现【注意看反向迭代器】2.1 list_frame.h2.2riterator.h2.3list.h2.4 vector.h2.5test.cpp 3.反向迭代器的应用1.使用要求2.迭代器的分类 1.适配器 1.1传统意义上的适配器 1.2语言里的适配器 容…

基于python+MobileNetV2算法模型实现一个图像识别分类系统

一、目录 算法模型介绍模型使用训练模型评估项目扩展 二、算法模型介绍 图像识别是计算机视觉领域的重要研究方向,它在人脸识别、物体检测、图像分类等领域有着广泛的应用。随着移动设备的普及和计算资源的限制,设计高效的图像识别算法变得尤为重要。…

fork函数和exec族函数的结合使用 的案例

首先回顾之前所讲,在说明“为什么要创建进程”的时候,提到过以下两个原因: 其中第一个原因很好理解,而第二个原因就包含了上节所讲的exec族函数的知识点,并且不管是之前的博文还是上节的exec,都提到了一点“…

重启服务器引发的Docker异常

公司使用云服务器需要硬盘扩容,服务器重启才生效。 重启以后发现拉取远程镜像的命令登录失败了! 然后发现找不到容器和镜像列表了,但是容器都启动了。 查看docker运行状态都是正常的 systemctl is-active docker systemctl status docker.…

爬虫015_python异常_页面结构介绍_爬虫概念介绍---python工作笔记034

来看python中的异常 可以看到不做异常处理因为没有这个文件所以报错了 来看一下异常的写法

exec族函数

本节学习exec族函数,并大量参考了以下链接: linux进程---exec族函数(execl, execlp, execle, execv, execvp, execvpe)_云英的博客-CSDN博客 exec族函数函数的作用 我们用fork函数创建新进程后,经常会在新进程中调用exec函数去执行另外一个程…

Fortinet安全专家问答实录|如何防护暴力破解、撞库攻击

黑客攻防,一个看似神秘,但却必不可缺的领域。近期,全球网络与安全融合领域领导者Fortinet(Nasdaq:FTNT),开启了Fortinet DEMO DAY系列实战攻防演练线上直播,让人人都能零距离观摩黑客…

AI 绘画Stable Diffusion 研究(六)sd提示词插件

大家好,我是风雨无阻。 今天为大家推荐一款可以有效提升我们使用 Stable Diffusion WebUI 效率的插件, 它就是 prompt-all-in-one, 它不但能直接将 WebUI 中的中文提示词转换为英文,还能一键为关键词加权重,更能建立常…

消息中间件 —— 初识Kafka

文章目录 1、Kafka简介1.1、消息队列1.1.1、为什么要有消息队列?1.1.2、消息队列1.1.3、消息队列的分类1.1.4、p2p 和 发布订阅MQ的比较1.1.5、消息系统的使用场景1.1.6、常见的消息系统 1.2、Kafka简介1.2.1、简介1.2.2、设计目标1.2.3、kafka核心的概念 2、Kafka的…

存储过程的学习

1,前言 这是实习期间学习的,我可能是在学校没好好听课,(或者就是学校比较垃,没教这部分,在公司经理让我下去自己学习,太难了,因为是公司代码很多部分都是很多表的操作&#…

菲律宾的区块链和NFT市场调研

菲律宾的区块链和NFT市场调研 基本介绍 参考: https://zh.wikipedia.org/wiki/%E8%8F%B2%E5%BE%8B%E5%AE%BE zheng治制度:Zongtong议会制 现任Zongtong: 小费迪南德马科斯, 是独裁者费迪南德马科斯之子,人称“小马科斯” 官方语言…

【动态map】牛客挑战赛67 B

登录—专业IT笔试面试备考平台_牛客网 题意: 思路: 考虑动态的map 可以先定义一个状态,然后用map统计前缀这个状态的出现次数 在这里,定义{a,b}为cnt1 - cnt0和cnt2 - cnt0 当cnt0 和 cnt1都和cnt2相同时,统计贡献…

oracle 增加控制文件

oracle 增加控制文件 1、看control_file路径 SQL> show parameter controlNAME TYPE VALUE ------------------------------------ ----------- ------------------------------ control_file_record_keep_time integer …

Kubernetes kubectl管理命令使用方法

陈述式资源管理方法(通过命令行) 1.kubernetes 集群管理集群资源的唯一入口是通过相应的方法调用 apiserver 的接口 2.kubectl 是官方的CLI命令行工具,用于与 apiserver 进行通信,将用户在命令行输入的命令,组织并转化…

从零开始学python(十六)爬虫集群部署

前言 今天讲述Python框架源码专题最后一个部分,爬虫集群部署,前面更新了十五个从零开始学python的系列文章,分别是: 1.编程语法必修篇 2.网络编程篇 3.多线程/多进程/协程篇 4.MySQL数据库篇 5.Redis数据库篇 6.MongoDB数据库篇 …

运维监控学习笔记2

硬件监控: 1)使用IPMI 2)机房巡检 路由器和交换机: 使用SNMP(简单网络管理协议)进行监控。 Linux 安装snmp: yum install -y net-snmp net-snmp-utils 说明:net-snmp是安装在snm…

到 2030 年API 攻击预计将激增近 1000%

导读云原生应用程序编程接口管理公司 Kong 联合外部经济学家的最新研究预计,截至 2030 年 API 攻击将激增 996%,意味着与 API 相关的网络威胁的频率和强度都显着升级。 这项研究由 Kong 分析师和布朗大学副教授 Christopher Whaley 博士合作进行&#x…

StarGANv2: Diverse Image Synthesis for Multiple Domains论文解读及实现(一)

StarGAN v2: Diverse Image Synthesis for Multiple Domainsp github:https://github.com/clovaai/stargan-v2 1 模型架构 模型主要架构由四部分组成 ①Generator、②Mapping network、③Style encoder、④Discriminator Generator:G网络 生成模型G将输入图片x转换…

【软件测试】UI自动化框架,数据驱动 vs 关键字驱动怎么选

一、UI自动化测试用例剖析 让我们先从分析一端自动化测试案例的代码开始我们的旅程。以下是我之前写的一个自动化测试的小Demo。这个Demo基于Selenium与Java。 自动化测试小Demo 它要测试的东西其实是要看一下百度搜索能不能返回兴业银行的官网。我们分析一下这段代码都包含些…

清除pip安装库时的缓存

目录 1、命令清除缓存 2、路径手动清除 在使用pip安装Python库时,如果之前已经下载过该库,pip会默认使用缓存来安装库,而不是重新从网络上下载。缓存文件通常存储在用户目录下的缓存文件夹中,具体位置因操作系统和Python版本而异…